DOI QR코드

DOI QR Code

Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment

크리프 수명 평가를 위한 간략 크리프 응력 산출 방법론 분석

  • Received : 2016.10.24
  • Accepted : 2017.04.17
  • Published : 2017.08.01

Abstract

Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the $M{\alpha}-tangent$ method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep stress and the alternative methods; however, in the $M{\alpha}-tangent$ method, the results were affected by the element size.

본 논문에서는 재분배된 크리프 응력을 근사적으로 접근하기 위해 크리프 해석에 비해 비교적 간단한 탄성 및 탄성-소성 해석법을 사용하여 그 결과와 비교하였다. 탄성해석 결과를 이용하여 $M_{\alpha}-tangent$ method의 Primary Stress와 ASME 코드의 $P_L+P_b/K_t$를 구하였고 탄성-소성 해석 결과를 이용하여 R5 코드의 ${\sigma}^R_{ref}$ 를 구하였다. 용접 형상이 있는 십자 모양의 판 형상에 굽힘 하중, 단축인장 및 이축인장이 작용하는 경우와 r/t가 5, 20인 곡관에 굽힘 하중 및 내압이 작용하는 경우 등 여러 형상에 대한 해석을 수행하였다. 요소 민감도 확인을 위해서는 판 형상에 굽힘 하중이 가해 지는 경우 여러 요소 크기에 대한 해석을 수행하였다. 간략 해석 결과는 크리프 응력과 큰 차이를 보이지 않았지만, $M_{\alpha}-tangent$ method의 경우 요소 크기에 민감하고 ASME코드와 R5코드의 결과는 요소 크기에 민감하지 않았다.

Keywords

References

  1. Webster, G. A. and Ainsworth, R. A., 1994, High Temperature Component Life Assessment, Chapman & Hall, London.
  2. Al Laham, S., 1999, "Large Bore Branch Test Creep Analysis," EPD/GEN/REP/0371/98.
  3. Shard, P. a., Hurst, A. M. and Jagger, M., 1998, "Hartlepool Power Station Defect Assessment of the Hot Reheat Crossover Branch Weld B2C/SR98F," Task 34627.
  4. Seshadri, R. and Hossain, M. M., 2009, "Simplified Limit Load Determination U sing the $m_{\alpha}$-Tangent Method," ASME j. Pressure Vessel Technol., 131(2), p. 021213 https://doi.org/10.1115/1.3067001
  5. Hossain, M. M., Reinhardt, W. D. and Seshadri, R., 2009, "Simplified Stress Categorization Using a Single Linear Elastic Analysis," ASME j. Pressure Vessel Technol., 131, p. 061204. https://doi.org/10.1115/1.4000199
  6. ASME, 2015, "Rules for Construction of Nuclear Facility Components, Division 1, Subsection NH," Boiler and Pressure Vessel Code, American Society of Mechanical Engineers, New York.
  7. R5: An Assessment Procedure for the High Temperature Response of Structures, Revision 3. British Energy Generation Limited, Barnwood; 2003.
  8. Ainsworth, R.A., 1984, "The Assessment of Defects in Structures of Strain Hardening Materials," Engineering Fracture Mechanics, Vol. 19, pp. 633-642. https://doi.org/10.1016/0013-7944(84)90096-1
  9. ASME, 2015, "Rules for Construction of Pressure Vessels, Division 2, Alternative Rules," Boiler and Pressure Vessel Code, American Society of Mechanical Engineers, New York.
  10. ABAQUS, 2013, ABAQUS version 6.13., User's Manual, Dassault System Inc.
  11. Han, J. J., Kim, Y. J., Jerng, D. W., Nikbin, K. and Dean, D., 2014, "Quantification of Creep Stresses Within HAZ in Welded Branch Junctions," Fatigue & Fracture of Engineering Materials & Structures, Vol. 38, No. 1, pp. 113-124. https://doi.org/10.1111/ffe.12223