• 제목/요약/키워드: 나노 분말

검색결과 1,150건 처리시간 0.024초

세라믹 분말을 이용한 오일 기지 나노유체의 열적거동 평가 (Evaluation of Thermal Behavior of Oil-based Nanofluids using Ceramic Nanoparticles)

  • 최철;유현성;오제명
    • 한국전기전자재료학회논문지
    • /
    • 제20권7호
    • /
    • pp.587-593
    • /
    • 2007
  • Oil-based nanofluids were prepared by dispersing spherical and fiber shaped $Al_2O_3$ and AlN nanoparticles in transformer oil. Two hydrophobic surface modification processes using oleic acid (OA) and polyoxyethylene alkyl acid ester (PAAE) were compared in this study. The dispersion stability, viscosity and breakdown voltage of the nanofluids were also characterized. $(Al_2O_3+AlN)$ mixed nanofluid was prepared to take an advantage of the excellent thermal conductivity of AlN and a good convective heat transfer property of fiber shaped $Al_2O_3$. For $(Al_2O_3+AlN)$ particles with 1 % volume fraction in oil, the enhancement of thermal conductivity and convective heat transfer coefficient was nearly 11 % and 30 %, respectively, compared to pure transformer oil. The nanofluid, containing $Al_2O_3+AlN$, successfully lowered the temperature of the heating element and oil itself during a natural convection test using a prototype transformer.

고 에너지 밀링 공정으로 제조된 지르콘 나노분말의 소결특성에 관한 연구 (Sintering Characteristics of Zircon Nanopowders Fabricated by High Energy Milling Process)

  • 이주성;강종봉
    • 한국재료학회지
    • /
    • 제26권2호
    • /
    • pp.95-99
    • /
    • 2016
  • In this study, 5 um sized $ZrSiO_4$ was ground to 1.9 um, 0.3 um, and 0.1 um sized powders by wet high energy milling process, and the sintering characteristics were observed. Pure $ZrSiO_4$ itself can-not be sintered to these levels of theoretical density, but it was possible to sinter $ZrSiO_4$ powder of nano-scale size of, -0.1 um to the theoretical density and to lower the sintering temperature for full density. Also, the decomposition of $ZrSiO_4$ with a size in the micron range resulted in the formation of monoclinic $ZrO_2$; however, in the nano sized range, the decomposition resulted in the tetragonal phase of $ZrO_2$. So, it was possible to improve the sintering characteristics of nano-sized $ZrSiO_4$ powders.

기계적으로 합성한 분말로부터 급속 소결에 의한 나노 구조의 Co-Al2O3 복합재료 제조 (Fabrication of Nanocrystalline Co-Al2O3 from Mechanically Synthesized Powders by Rapid Sintering)

  • 박나라;손인진
    • 대한금속재료학회지
    • /
    • 제50권12호
    • /
    • pp.961-966
    • /
    • 2012
  • Nano-sized Co and $Al_2O_3$ powders were successfully synthesized from $3/4Co_3O_4$ and 2Al by high-energy ball milling. A dense nanocrystalline $2.25Co-Al_2O_3$ composite was consolidated from mechanically synthesized powders by the pulsed current activated sintering (PCAS) method within 2 min. Consolidation was accomplished under the combined effects of a pulsed current and mechanical pressure. A dense $2.25Co-Al_2O_3$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and a pulsed current of 2800 A. The fracture toughness and hardness of the $2.25Co-Al_2O_3$ composite were $8MPa{\cdot}m^{1/2}$, $870kg/mm^2$, respectively.

수열합성법을 이용한 세륨산화물 나노분말의 특성 및 합성에 대한 연구 (Synthesis and Characterization of $CeO_2$ Powders by the Hydrothermal Process)

  • 공명호;나한길;김현우;양학희
    • 반도체디스플레이기술학회지
    • /
    • 제9권2호
    • /
    • pp.49-54
    • /
    • 2010
  • We have successfully synthesized $CeO_2$ nanopowders by means of the hydrothermal method, in a low temperature range of $100-200^{\circ}C$. In order to investigate the structure and morphology of the nanopowders, scanning electron microscopy and X-ray diffraction have been employed. In addition, for exploring the optical properties, Raman spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence spectroscopy have been used. In the optimized condition, with the pH, velocity, and time of 4.5, 600 rpm, and 60 h, the $CeO_2$ nanopowders with a diameter ranging from 50 to 150 nm have been synthesized. The nanopowders exhibited the visible emission mainly in the blue region. With comparing the reaction time, it is revealed that the extinction of functional groups at 60 h contributed to the growth and homogenization of the $CeO_2$ powders. Since the overgrowth and agglomeration of nanopowders were found, we suggest that the cracking/growth process is more favorable mechanism than the dissolution/precipitation process.

Mn 분말을 환원제로 사용하여 열증발법에 의해 생성된 ZnO 마이크로/나노결정 (ZnO Micro/Nanocrystals Synthesized by Thermal Evaporation Method using Mn Powder as the Reducing Agent)

  • 소호진;이근형
    • 한국재료학회지
    • /
    • 제29권7호
    • /
    • pp.432-436
    • /
    • 2019
  • Zinc oxide(ZnO) micro/nanocrystals are grown via thermal evaporation of ZnO powder mixed with Mn powder, which is used as a reducing agent. The ZnO/Mn powder mixture produces ZnO micro/nanocrystals with diverse morphologies such as rods, wires, belts, and spherical shapes. Rod-shaped ZnO micro/nanocrystals, which have an average diameter of 360 nm and an average length of about $12{\mu}m$, are fabricated at a temperature as low as $800^{\circ}C$ due to the reducibility of Mn. Wire-and belt-like ZnO micro/nanocrystals with length of $3{\mu}m$ are formed at $900^{\circ}C$ and $1,000^{\circ}C$. When the growth temperature is $1,100^{\circ}C$, spherical shaped ZnO crystals having a diameter of 150 nm are synthesized. X-ray diffraction patterns reveal that ZnO had hexagonal wurtzite crystal structure. A strong ultraviolet emission peak and a weak visible emission band are observed in the cathodoluminescence spectra of the rod- and wire-shaped ZnO crystals, while visible emission is detected for the spherical shaped ZnO crystals.

마이크로 PIM용 Fe 마이크로-나노 혼합분말 피드스톡의 다이성형 및 소결거동 (Die Compaction and Sintering Behavior of Fe Micro-nano-powder Feedstock for Micro-PIM)

  • 유우경;최준필;이재성
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.32-39
    • /
    • 2011
  • The present investigation was performed on the die compaction and sintering behavior of Fe micro-nano mixed powder with a mixed binder for powder injection molding. Warm die compaction of the feedstock for simulation of the static injection molding process was conducted using a cylindrical mold of 10 mm diameter at $100^{\circ}C$ under 4MPa. The die compaction of the micro-nanopowder feedstock underwent a uniform molding behavior showing a homogeneous distribution of nanopowders among the micropowders without porosity and distortion. After debinding, the powder compact maintained a uniform structure without crack and distortion, leading to a high green density of 64.2% corresponding to the initial powder loading of 65%. The sintering experiment showed that the micro-nanopowder compact underwent a near full and isotropic densification process during sintering. It was observed that the nanopowders effectively suppressed the growth of micropowder grains during densification process. Conclusively, the use of nanopowder for PIM feedstock might provide a new concept for processing a full density PIM parts with fine microstructure.

초음파 밀링한 WO3-CuO 나노혼합분말의 수소환원 거동 (The Hydrogen Reduction Behavior of Ultrasonic Ball-milled WO3-CuO Nanopowder)

  • 정성수;윤의식;이재성
    • 대한금속재료학회지
    • /
    • 제47권9호
    • /
    • pp.597-603
    • /
    • 2009
  • The hydrogen reduction behavior of ultrasonic ball-milled $WO_3-CuO$ nanopowder, which is highly related with micro-pore structure, was investigated by thermogravimetry(TG) and hygrometry system. EDS and TEM results represented that the ultrasonic ball-milled $WO_3-CuO$ nanopowder consisted of the agglomerates which was confirmed as a homogeneous mixture of $WO_3$ and CuO particles. It was found that the reduction reaction of CuO was retarded by initial micro-pores which are smaller than 40 nm in the ultrasonic ball-milled $WO_3-CuO$ nanopowder. The earlier agglomeration of Cu particles at comparably low temperature decreased the volume of micro-pores in the $WO_3-CuO$ nanopowder which caused the retardation of $WO_3$ reduction reaction. These results clearly explain that the micro-pore structure significantly affected the reduction reaction of $WO_3$ and CuO in the $WO_3-CuO$ nanopowder.

방열소재 응용을 위한 알루미나 분말 표면 위 탄소나노튜브의 직접 성장 거동 고찰 (Investigation of direct growth behavior of carbon nanotubes on alumina powders to use as heat dissipation materials)

  • 이종환;한현호;정구환
    • 한국표면공학회지
    • /
    • 제56권1호
    • /
    • pp.55-61
    • /
    • 2023
  • As a preliminary study to produce functional nanocomposites in a heat dissipation device, we performed the direct synthesis of carbon nanotubes (CNTs) on the surface of alumina (Al2O3) powders. A thermal chemical vapor deposition (TCVD) system was used to grow CNTs directly on the Al2O3 surface. In order to investigate the growth behavior of CNTs, we varied both furnace temperature of the TCVD ranging from 700 to 850 ℃ and concentration of the ferritin-dissolved DI solution from 0.1 to 2.0 mg/mL. From the previous results, the gas composition and duration time for CNT growth were fixed as C2H4 : H2 = 30 : 500 (vol. %) and 10 min, respectively. Based on the analysis results, the optimized growth temperature and ferritin concentration were found to be 825 ℃ and 0.5 mg/mL, respectively. The obtained results could be adopted to achieve mass production of nanocomposites with heat dissipation functionality.

질화알루미늄 나노분말의 부착과 이를 활용한 초소수성 표면 제작 (Deposition of aluminum nitride nanopowders and fabrication of superhydrophobic surfaces )

  • 이광석;최헌주;조한동
    • 한국표면공학회지
    • /
    • 제57권1호
    • /
    • pp.49-56
    • /
    • 2024
  • Superhydrophobic surfaces have been expected to be able to provide considerable performance improvements and introduce innovative functions across diverse industries. However, representative methods for fabricating superhydrophobic surfaces include etching the substrate or attaching nanosized particles, but they have been limited by problems such as applicability to only a few materials or low adhesion between particles and substrates, resulting in a short lifetime of superhydrophobic properties. In this work, we report a novel coating technique that can achieve superhydrophobicity by electrophoretic deposition of aluminum nitride (AlN) nanopowders and their self-bonding to form a surface structure without the use of binder resins through a hydrolysis reaction. Furthermore, by using a water-soluble adhesive as a temporary shield for the electrophoretic deposited AlN powders, hierarchical aluminum hydroxide structures can be strongly adhered to a variety of electrically conductive substrates. This binder-free technique for creating hierarchical structures that exhibit strong adhesion to a variety of substrates significantly expands the practical applicability of superhydrophobic surfaces.

패각 칼슘 입자 크기에 따른 흡수율 (Intestinal Permeability of Oyster Shell Calcium with Different Particle Sizes)

  • 한정희;최현선;나경수;정승식;서형주
    • 한국식품영양과학회지
    • /
    • 제43권3호
    • /
    • pp.454-458
    • /
    • 2014
  • 본 연구에서는 패각에서 유래하는 칼슘의 이용가치를 높이고자 분쇄한 패각 칼슘을 입자 크기별로 제조하여 이온화율과 흡수율을 조사하였다. 패각 칼슘분말 현탁액을 알코올 중에서 비중차이별로 분리하고 입자 크기를 측정하여 4개의 시료군으로 나누었다; NC(일반 패각 칼슘), C-1(1,000 rpm 상등액), C-2(2,000 rpm 상등액), C-3(3,000 rpm 상등액). 이들의 입자 크기는 각각 $2,280.3{\pm}64nm$, $521.3{\pm}83.3nm$, $313.9{\pm}29.5nm$, $280{\pm}3.4nm$를 보였다. 각 칼슘군들을 대상으로 이온화 정도를 측정한 결과 C-3군이 오차범위내에서 다른 군들에 비해 이온화율이 다소 증가했다. In vitro 상에서 dialysis 막을 이용한 나노칼슘의 투과율을 측정한 결과 나노칼슘의 입자 크기가 작을수록 막 투과성이 증대됨을 확인할 수 있었다. 한편 rat의 내장주머니 막(intestinal sac)을 이용하여 장내 환경별 나노칼슘의 투과율을 측정한 결과 C-3군을 제외한 모든 군에서 십이지장(pH 4.2)과 공장(pH 6.2) 환경보다는 회장(pH 7.2)에서의 나노칼슘의 장투과율이 비교적 높게 나타난 반면 C-3군에서는 십이지장 환경에서의 투과율이 다소 높았다. 특히 십이지장 환경에서의 샘플 간 투과율을 비교할 때 C-2와 C-3군이 가장 높은 투과율을 보였고 NC 칼슘이 가장 낮은 투과율을 나타내어 입자 크기가 작을수록 장 투과율이 증가함을 확인할 수 있었다. 위의 결과를 종합해볼 때, 패각에서 유래하는 칼슘을 적절한 가공처리를 거쳐 나노칼슘으로 만들면 칼슘의 이온화율과 장내흡수율을 향상시킬 수 있는 것으로 사료된다.