Browse > Article
http://dx.doi.org/10.4313/JKEM.2007.20.7.587

Evaluation of Thermal Behavior of Oil-based Nanofluids using Ceramic Nanoparticles  

Choi, Cheol (한국전력공사 전력연구원 전략기술연구소 신소재그룹)
Yoo, Hyun-Sung (한국전력공사 전력연구원 전략기술연구소 신소재그룹)
Oh, Je-Myung (한국전력공사 전력연구원 전략기술연구소 신소재그룹)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.20, no.7, 2007 , pp. 587-593 More about this Journal
Abstract
Oil-based nanofluids were prepared by dispersing spherical and fiber shaped $Al_2O_3$ and AlN nanoparticles in transformer oil. Two hydrophobic surface modification processes using oleic acid (OA) and polyoxyethylene alkyl acid ester (PAAE) were compared in this study. The dispersion stability, viscosity and breakdown voltage of the nanofluids were also characterized. $(Al_2O_3+AlN)$ mixed nanofluid was prepared to take an advantage of the excellent thermal conductivity of AlN and a good convective heat transfer property of fiber shaped $Al_2O_3$. For $(Al_2O_3+AlN)$ particles with 1 % volume fraction in oil, the enhancement of thermal conductivity and convective heat transfer coefficient was nearly 11 % and 30 %, respectively, compared to pure transformer oil. The nanofluid, containing $Al_2O_3+AlN$, successfully lowered the temperature of the heating element and oil itself during a natural convection test using a prototype transformer.
Keywords
Transformer oil; Nanofluids; Dispersion; Thermal conductivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. U. S. Choi, 'Enhancing Thermal Conductivity of Fluids with Nanoparticles', Developments and applications of non-Newtonian flows, ASME FED 231/MD 66, p. 99, 1995
2 P. Keblinski, J. A. Eastman, and D. G. Cahill, 'Nanofluids for Thermal Transport', Materialstoday, p. 36, 2005
3 X. G. Wang and A. S. Mujumdar, 'Heat transfer characteristics of nanofluids', Int. J. Therm. Sci., Vol. 46, p. 1, 2007   DOI   ScienceOn
4 S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, 'Measuring thermal conductivity of fluids containing oxide nanoparticles', J. Heat Trans., Vol. 121, p. 280, 1999   DOI
5 J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson, and S. Lee, 'Enhanced thermal conductivity through the development of nanofluids', Materials Society Symposium Proceedings, Vol. 457, MRS, p. 3, 1997
6 X. Wang, X. Xu, and S. U. S. Choi, 'Thermal conductivity of nanoparticle-fluid mixture', J. Heat Transfer, Vol. 13, p. 474, 1999
7 S. M. S. Murshed, K. C. Leong, and C. Yang, 'Enhanced thermal conductivity of $TiO_2$-water based nanofluids', Int. J. Therm. Sci., Vol. 44, p. 367, 2005   DOI   ScienceOn
8 H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, and Q. Wu, 'Thermal conductivity enhancement of suspensions containing nanosized alumina particles', J. Appl. Phys., Vol. 91, p. 4568, 2002   DOI   ScienceOn
9 송현우, 최 철, 최경식, 오제명, '알루미나 나노분말을 함유한 변압기 절연유의 분산기술', 전기전자재료학회논문지, 19권, 3호, p. 233, 2006   과학기술학회마을   DOI
10 Z. Li and Y. Zhu, 'Surface-modification of $SiO_2$ nanoparticles with oleic acid', Appl. Surf. Sci., Vol. 211, p. 315, 2003   DOI   ScienceOn