The Hydrogen Reduction Behavior of Ultrasonic Ball-milled WO3-CuO Nanopowder

초음파 밀링한 WO3-CuO 나노혼합분말의 수소환원 거동

  • Jung, Sung-Soo (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Yoon, Eui-Sik (Department of Metallurgy and Materials Science, Hanyang University) ;
  • Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University)
  • 정성수 (한양대학교 금속재료공학과) ;
  • 윤의식 (한양대학교 금속재료공학과) ;
  • 이재성 (한양대학교 금속재료공학과)
  • Received : 2009.05.15
  • Published : 2009.09.25

Abstract

The hydrogen reduction behavior of ultrasonic ball-milled $WO_3-CuO$ nanopowder, which is highly related with micro-pore structure, was investigated by thermogravimetry(TG) and hygrometry system. EDS and TEM results represented that the ultrasonic ball-milled $WO_3-CuO$ nanopowder consisted of the agglomerates which was confirmed as a homogeneous mixture of $WO_3$ and CuO particles. It was found that the reduction reaction of CuO was retarded by initial micro-pores which are smaller than 40 nm in the ultrasonic ball-milled $WO_3-CuO$ nanopowder. The earlier agglomeration of Cu particles at comparably low temperature decreased the volume of micro-pores in the $WO_3-CuO$ nanopowder which caused the retardation of $WO_3$ reduction reaction. These results clearly explain that the micro-pore structure significantly affected the reduction reaction of $WO_3$ and CuO in the $WO_3-CuO$ nanopowder.

Keywords

References

  1. C. G. Goetzel, Treatise on Powder Metallurgy Vol. II, Interscience Publisher Inc., New York (1950)
  2. N. Furukawa, Powder Metall. 33, 213 (1990)
  3. S. Yoo, M. S. Krupashankara, T. S. Sudarshan, and R. J. Dowding, Mater. Sci. and Tech. 14, 170 (1998) https://doi.org/10.1179/026708398790301674
  4. B. L. Mordike, J. Kaczmar, M. Kielbinski, and K. U. Kainer, Powder Metall. Int. 23, 91 (1991)
  5. S. W. Lee, T. H. In, and S. K. Joo, J. Kor. Inst. Met. & Mater. 31, 1262 (1993)
  6. Y. Kai, C. Yamasaki, K. Yukuhiro, and T. Okabe, Proc. of the 2nd Inter. Conf. on Tungsten and Refractory Metals, MPIF, Princeton, NJ (1994)
  7. J. S. Lee and T. H. Kim, Solid State Phenom. 25&26, 143 (1992) https://doi.org/10.4028/www.scientific.net/SSP.25-26.143
  8. J. S. Lee, T. H. Kim, and T. G. Kang, Proc. of 1994 Powder Metallurgy World Congress, Paris (1994)
  9. J. S. Lee and B. S. Kim, Mater. Trans. JIM 42, 1607 (2001) https://doi.org/10.2320/matertrans.42.1607
  10. J. S. Lee, J. G. Nam, and P. Knorr, Met. and Mater. 5, 115 (1999) https://doi.org/10.1007/BF03026040
  11. S. S. Jung, Y. S. Kang, and J. S. Lee, J. Kor. Powder Metall. Inst. 13, 205 (2006) https://doi.org/10.4150/KPMI.2006.13.3.205
  12. P. M. Kantbale, P. R. Pandit, and A. M. Wilhelm, Ultrason. Sonochem. 12, 441 (2005) https://doi.org/10.1016/j.ultsonch.2004.05.017
  13. R. Haubner, W. D. Schubert, H. Hellmer, E. Lassner, and B. Lux, Int. J. Refract. Met. Hard Mater. 2, 156 (1983)
  14. C. Schmid and O. Sbaizero, J. Mater. Sci. 35, 1213 (2000) https://doi.org/10.1023/A:1004796722366
  15. L. C. Hagenson and L. K. Doraiswamy, Chem. Eng. Sci. 53, 131 (1998) https://doi.org/10.1016/S0009-2509(97)00193-0
  16. H. Monnier, A. M. Wilhelm, and H. Delmas, Ultrason. Sonochem. 6, 67 (1999) https://doi.org/10.1016/S1350-4177(98)00034-0
  17. P. W. Paubenblat, Copper Base Powder Metrallurgy, MPIF, Princeton, NJ (1980)
  18. D. G. Kim, K. H. Min, S. Y. Chang, S. T. Oh, C. H. Lee, and Y. D. Kim, Mater. Sci. Eng. A 399, 326 (2005) https://doi.org/10.1016/j.msea.2005.04.010
  19. S. S. Jung, Y. S. Kang, and J. S. Lee, Mat. Sci. Forum 534- 536, 153 (2007) https://doi.org/10.4028/www.scientific.net/MSF.534-536.153
  20. J. Szekely, J. W. Evans, and H. Y. Sohn, Gas-Solid Reactions, Academic Press, New York (1976)
  21. N. E. Fouad, J. Anal. Appl. Pyrol. 44, 13 (1997) https://doi.org/10.1016/S0165-2370(97)00073-9
  22. N. E. Fouad, K. M. E. Attyia, and M. I. Zaki, Powder Technol. 74, 31 (1993) https://doi.org/10.1016/0032-5910(93)80005-U