Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.12.961

Fabrication of Nanocrystalline Co-Al2O3 from Mechanically Synthesized Powders by Rapid Sintering  

Park, Na-Ra (Division of Advanced Materials Engineering, the Research Center of Advanced materials Development, Chonbuk National University)
Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Advanced materials Development, Chonbuk National University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.12, 2012 , pp. 961-966 More about this Journal
Abstract
Nano-sized Co and $Al_2O_3$ powders were successfully synthesized from $3/4Co_3O_4$ and 2Al by high-energy ball milling. A dense nanocrystalline $2.25Co-Al_2O_3$ composite was consolidated from mechanically synthesized powders by the pulsed current activated sintering (PCAS) method within 2 min. Consolidation was accomplished under the combined effects of a pulsed current and mechanical pressure. A dense $2.25Co-Al_2O_3$ with relative density of up to 95% was produced under simultaneous application of a 80 MPa pressure and a pulsed current of 2800 A. The fracture toughness and hardness of the $2.25Co-Al_2O_3$ composite were $8MPa{\cdot}m^{1/2}$, $870kg/mm^2$, respectively.
Keywords
rapid sintering; composite materials; nanomaterials; mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Ceschini, G. Minak, and A. Morri, Comp. Sci. Tech. 66, 333 (2006).   DOI   ScienceOn
2 S. C. Tjong and Z. Y. Ma, Mater. Sci. Eng. 29, 49 (2000).   DOI   ScienceOn
3 D. J. Lloyd, Int. Mater. Rev. 39, 1 (1994).   DOI   ScienceOn
4 J. M. Torralba and F. Velasco, J. Mater. Proce. Tech. 133, 203 (2006).
5 R. Fan, B. Liu, J. Zhang, J. Bi, and Y. Yin, Mater. Chem. Phys. 91, 140 (2005).   DOI   ScienceOn
6 S. Paris, E. Gaffet, F. Bernard, and Z. A. Munir, Scr. Mater. 50, 691 (2004).   DOI   ScienceOn
7 T. Ungar and A. Borbely, Nanostruct. Mater. 11, 103 (1999).   DOI   ScienceOn
8 A. Hirata, H. Zheng, and M. Yoshikawa, Diamond Related Mater. 7, 1669 (1998).   DOI   ScienceOn
9 Z. Fang and J. W. Eason, Int. J. of Refractory Met. & Hard Mater. 13, 297 (1995).   DOI   ScienceOn
10 M. Sommer, W. D. Schubert, E. Zobetz, and P. Warbichler, Int. J. of Refractory Met. & Hard Mater. 20, 41 (2002).   DOI   ScienceOn
11 H. S. Kang, I. Y. Ko, J. K. Yoon, J. M. Doh, K. T. Hong, and I. J. Shon, Met. Mater. Int. 17, 57 (2011).   DOI   ScienceOn
12 I. J. Shon, H. Y. Song, S. W. Cho, W. B. Kim, and C. Y. Suh, Korean J. Met. Mater. 50, 39 (2012).   DOI
13 C. Suryanarayana, Grant Norton M., X-ray diffraction A Practical Approach. p. 207, Plenum Press (1998).
14 Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002).   DOI   ScienceOn
15 J. E. Garay, U. A. Tamburini, Z. A. Munir, S. C. Glade, and P. A. Kumar, Appl. Phys. Lett. 85, 573 (2004).   DOI   ScienceOn
16 J. R. Friedman, J. E. Garay. U. A. Tamburini, and Z. A. Munir, Intermetallics 12, 589 (2004).   DOI   ScienceOn
17 J. E. Garay, U. A. Tamburini, and Z. A. Munir, Acta Mater. 51, 4487 (2003).   DOI   ScienceOn
18 R. L. Coble, J. Appl. Phys. 41, 4798 (1970).   DOI
19 H. Cheol, H. Kuk, I. J. Shon, and I. Y. Ko, Journal of Ceramic Processing Research 7, 327 (2006).
20 G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, J. Am. Ceram. Soc. 64, 533 (1981).   DOI
21 http://en.wikipedia.org/wiki/Elastic properties of the elements (data page).
22 N. Mohamed, Rahaman, and Aihua Yao, J. Am. Ceram. Soc. 90, 1965 (2007).   DOI   ScienceOn