Browse > Article

The Hydrogen Reduction Behavior of Ultrasonic Ball-milled WO3-CuO Nanopowder  

Jung, Sung-Soo (Department of Metallurgy and Materials Science, Hanyang University)
Yoon, Eui-Sik (Department of Metallurgy and Materials Science, Hanyang University)
Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University)
Publication Information
Korean Journal of Metals and Materials / v.47, no.9, 2009 , pp. 597-603 More about this Journal
Abstract
The hydrogen reduction behavior of ultrasonic ball-milled $WO_3-CuO$ nanopowder, which is highly related with micro-pore structure, was investigated by thermogravimetry(TG) and hygrometry system. EDS and TEM results represented that the ultrasonic ball-milled $WO_3-CuO$ nanopowder consisted of the agglomerates which was confirmed as a homogeneous mixture of $WO_3$ and CuO particles. It was found that the reduction reaction of CuO was retarded by initial micro-pores which are smaller than 40 nm in the ultrasonic ball-milled $WO_3-CuO$ nanopowder. The earlier agglomeration of Cu particles at comparably low temperature decreased the volume of micro-pores in the $WO_3-CuO$ nanopowder which caused the retardation of $WO_3$ reduction reaction. These results clearly explain that the micro-pore structure significantly affected the reduction reaction of $WO_3$ and CuO in the $WO_3-CuO$ nanopowder.
Keywords
W-Cu; nanopowder; ultrasonic ball-milling; hydrogen reduction; hygrometry;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 S. Yoo, M. S. Krupashankara, T. S. Sudarshan, and R. J. Dowding, Mater. Sci. and Tech. 14, 170 (1998)   DOI   ScienceOn
2 J. S. Lee, J. G. Nam, and P. Knorr, Met. and Mater. 5, 115 (1999)   DOI
3 S. S. Jung, Y. S. Kang, and J. S. Lee, J. Kor. Powder Metall. Inst. 13, 205 (2006)   DOI
4 P. M. Kantbale, P. R. Pandit, and A. M. Wilhelm, Ultrason. Sonochem. 12, 441 (2005)   DOI   PUBMED   ScienceOn
5 C. Schmid and O. Sbaizero, J. Mater. Sci. 35, 1213 (2000)   DOI   ScienceOn
6 L. C. Hagenson and L. K. Doraiswamy, Chem. Eng. Sci. 53, 131 (1998)   DOI   ScienceOn
7 H. Monnier, A. M. Wilhelm, and H. Delmas, Ultrason. Sonochem. 6, 67 (1999)   DOI   ScienceOn
8 D. G. Kim, K. H. Min, S. Y. Chang, S. T. Oh, C. H. Lee, and Y. D. Kim, Mater. Sci. Eng. A 399, 326 (2005)   DOI   ScienceOn
9 J. S. Lee and T. H. Kim, Solid State Phenom. 25&26, 143 (1992)   DOI
10 N. Furukawa, Powder Metall. 33, 213 (1990)
11 S. W. Lee, T. H. In, and S. K. Joo, J. Kor. Inst. Met. & Mater. 31, 1262 (1993)
12 R. Haubner, W. D. Schubert, H. Hellmer, E. Lassner, and B. Lux, Int. J. Refract. Met. Hard Mater. 2, 156 (1983)
13 J. S. Lee, T. H. Kim, and T. G. Kang, Proc. of 1994 Powder Metallurgy World Congress, Paris (1994)
14 N. E. Fouad, K. M. E. Attyia, and M. I. Zaki, Powder Technol. 74, 31 (1993)   DOI   ScienceOn
15 C. G. Goetzel, Treatise on Powder Metallurgy Vol. II, Interscience Publisher Inc., New York (1950)
16 J. Szekely, J. W. Evans, and H. Y. Sohn, Gas-Solid Reactions, Academic Press, New York (1976)
17 B. L. Mordike, J. Kaczmar, M. Kielbinski, and K. U. Kainer, Powder Metall. Int. 23, 91 (1991)
18 N. E. Fouad, J. Anal. Appl. Pyrol. 44, 13 (1997)   DOI   ScienceOn
19 S. S. Jung, Y. S. Kang, and J. S. Lee, Mat. Sci. Forum 534- 536, 153 (2007)   DOI
20 J. S. Lee and B. S. Kim, Mater. Trans. JIM 42, 1607 (2001)   DOI   ScienceOn
21 P. W. Paubenblat, Copper Base Powder Metrallurgy, MPIF, Princeton, NJ (1980)
22 Y. Kai, C. Yamasaki, K. Yukuhiro, and T. Okabe, Proc. of the 2nd Inter. Conf. on Tungsten and Refractory Metals, MPIF, Princeton, NJ (1994)