• Title/Summary/Keyword: 나노임프린트리소그래피

Search Result 89, Processing Time 0.029 seconds

c-AFM을 이용한 다양한 상변화 소재의 전기적 특성 평가에 관한 연구

  • Hong, Seong-Hun;Lee, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.156-156
    • /
    • 2010
  • 최근 휴대용전자기기의 급격한 수요증가로 인하여 고성능 저전력 비휘발성메모리에 대한 관심이 크게 증가되고 있다. 다양한 비휘발성 메모리중에 상변화메모리는 고집적성과 저전력등의 장점을 가져 현재 가장 유망한 차세대 비휘발성 메모리로 각광받고 있고 일부 상용화가 진행되고 있다. 현재 상변화 메모리의 주된 연구 방향은 sub-40nm 크기에서 물리적, 전기적, 열적 scaling down에 대한 내용이며 주로 새로운 상변화 물질을 개발하여 이러한 문제점을 극복하려고 연구가 진행되고 있다. 하지만 이러한 상변화 물질의 나노급 특성은 물리적, 전기적, 열적 특성이 복합적으로 나타나고 나노급 소자 제작이 어렵기때문에 많은 연구가 진행되지 못했다. 본 연구에서는 나노임프린트 리소그래피 기술과 c-AFM 기술을 통하여 다양한 나노급 상변화 물질의 물리적, 전기적, 열적 특성에 대해 연구를 진행하였다.

  • PDF

Fabrication of Moth-Eye Pattern on a Lens Using Nano Imprint Lithography and PVA Template (나노임프린트 리소그래피와 유연 PVA 템플릿을 이용한 렌즈 표면 moth-eye 패턴 형성에 관한 연구)

  • Bae, B.J.;Hong, S.H.;Kwak, S.U.;Lee, H.
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.2
    • /
    • pp.59-62
    • /
    • 2009
  • Antireflection pattern, moth-eye structure, was fabricated on lens using Ultra Violet nanoimprint lithography and flexible template. Ni template with conical shaped structure was used as a master template to molding. The flexible poly vinyl alcohol template was fabricated by molding. This poly vinyl alcohol template was used as an imprint template of imprint at lens. Using Ultra Violet nanoimprint lithography and poly vinyl alcohol template, polymer based moth-eye structure was formed on lens and its transmittance was increased up to 94% from 92% at 550 nm wavelength.

직접프린팅 및 수열합성 방법을 이용한 초소수성 TiO2표면 제작 및 젖음 특성 변화

  • Choe, Hak-Jong;Sin, Ju-Hyeon;Lee, Heon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.157-158
    • /
    • 2012
  • 최근 연잎의 표면과 같은 자기세정효과의 인공적인 제작을 위한 연구가 다방면으로 진행되고 있다. 이러한 자기세정효과는 초소수성 표면 제작 및 젖음 특성 분석을 통해 형성 및 해석이 가능하다. 본 연구에서는 나노임프린트 리소그래피 공정 및 수열합성법을 이용하여 주기적으로 배열된 계층구조의 $TiO_2$ 패턴을 형성 및 표면 개질을 통한 초소수성 구현하였다. 그 결과, 표면 개질된 계층구조의 $TiO_2$ 패턴은 deionized water에 대해 $160^{\circ}$ 이상의 정적 접촉각을 갖는 초소수성 표면을 형성하였다.

  • PDF

Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates (알루미늄 박 및 플레이트 표면 미세 패터닝을 위한 상온 임프린팅 기술)

  • Tae Wan Park;Seungmin Kim;Eun Bin Kang;Woon Ik Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Nanoimprint lithography (NIL) has attracted much attention due to its process simplicity, excellent patternability, process scalability, high productivity, and low processing cost for pattern formation. However, the pattern size that can be implemented on metal materials through conventional NIL technologies is generally limited to the micro level. Here, we introduce a novel hard imprint lithography method, extreme-pressure imprint lithography (EPIL), for the direct nano-to-microscale pattern formation on the surfaces of metal substrates with various thicknesses. The EPIL process allows reliable nanoscopic patterning on diverse surfaces, such as polymers, metals, and ceramics, without the use of ultraviolet (UV) light, laser, imprint resist, or electrical pulse. Micro/nano molds fabricated by laser micromachining and conventional photolithography are utilized for the nanopatterning of Al substrates through precise plastic deformation by applying high load or pressure at room temperature. We demonstrate micro/nanoscale pattern formation on the Al substrates with various thicknesses from 20 ㎛ to 100 mm. Moreover, we also show how to obtain controllable pattern structures on the surface of metallic materials via the versatile EPIL technique. We expect that this imprint lithography-based new approach will be applied to other emerging nanofabrication methods for various device applications with complex geometries on the surface of metallic materials.

Fracture Behavior of Glass/Resin/Glass Sandwich Structures with Different Resin Thicknesses (서로 다른 레진 두께를 갖는 유리/레진/유리샌드위치 구조의 파괴거동)

  • Park, Jae-Hong;Lee, Eu-Gene;Kim, Tae-Woo;Yim, Hong-Jae;Lee, Kee-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1849-1856
    • /
    • 2010
  • Glass/resin/glass laminate structures are used in the automobile, biological, and display industries. The sandwich structures are used in the micro/nanoimprint process to fabricate a variety of functional components and devices in fields such as display, optics, MEMS, and bioindustry. In the process, micrometer- or nanometer-scale patterns are transferred onto the substrate using UV curing resins. The demodling process has an important impact on productivity. In this study, we investigated the fracture behavior of glass/resin/glass laminates fabricated via UV curing. We performed measurements of the adhesion force and the interfacial energy between the mold and resin materials using the four-point flexural test. The bending-test measurements and the load-displacement curves of the laminates indicate that the fracture behavior is influenced by the interfacial energy between the mold and resin and the resin thickness.

The Review for Various Mold Fabrication toward Economical Imprint Lithography (미세패턴 전사기법을 위한 다양한 몰드 제작법 소개)

  • Kim, Joo-Hee;Kim, Youn-Sang
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.96-104
    • /
    • 2010
  • We suggest here a cost-effective replica fabrication method for transparent and hard molds for imprinting lithography such as NIL and S-FIL. The process starts with the use of a replica hard mold from a master, using a polymer copy as a carrier. The polymer copy as a carrier was treated by soluble process for forming anti-adhesion layer. Duplicated hard molds can eliminate direct contact between a hard master and a patterned polymer on a substrate and the generated contamination of a master during the imprinting process. The replica hard mold exhibits the glass-like properties introduced here, such as transparency and hardness, make it appropriate for nanoimprint lithography and step-and-flash imprint lithography.

HeLa Cell Culture on Nanoimprinted Patterns Using Conducting Polymer (전도성 고분자 나노임프린트 패턴 상의 HeLa 세포 배양)

  • Ahn, Junhyoung;Park, Kyungsook;Lee, Suok;Jung, Sanghee;Lim, Hyungjun;Shin, Yong-Beom;Lee, JaeJong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.63-67
    • /
    • 2017
  • In bioscience and biotechnology, the research of fundamental life mechanisms and their diseases caused by insufficiency is important. The study of a whole organism is difficult and sometimes impossible because of DNA, RNA, proteins, cellular organelles, various cells, and organs. Cell cultures can provide a simple method for researching cellular mechanisms and conditions, both in terms of physiological performance, and in response to chemical stimulation. According to conventional cell culture methodology, the flat surface is used with surface treatments for cell adhesion on the surface. Micro- and nanoscale patterns have been developed with chemical and biochemical modifications for cell immobilization. In this study, HeLa cell culture on nanostructures patterns was studied, including the 300 nm line and 150 nm pillar structures, using nanoimprint lithography and pyrrole as a biocompatible conducting polymer.

Molecular Dynamics Study on the Effect of Process Parameters on Nanoimprint Lithography Process (공정인자들이 나노임프린트 리소그래피 공정에 미치는 영향에 대한 분자동역학 연구)

  • Kang, Ji-Hoon;Kim, Kwang-Seop;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.243-251
    • /
    • 2006
  • Molecular dynamics simulations of nanoimprint lithography NIL) are performed in order to investigate effects of process parameters, such as stamp shape, imprinting temperature and adhesive energy, on nanoimprint lithography process and pattern transfer. The simulation model consists of an amorphous $SiO_{2}$ stamp with line pattern, an amorphous poly-(methylmethacrylate) (PMMA) film and an Si substrate under periodic boundary condition in horizontal direction to represent a real NIL process imprinting long line patterns. The pattern transfer behavior and its related phenomena are investigated by analyzing polymer deformation characteristics, stress distribution and imprinting force. In addition, their dependency on the process parameters are also discussed by varying stamp pattern shapes, adhesive energy between stamp and polymer film, and imprinting temperature. Simulation results indicate that triangular pattern has advantages of low imprinting force, small elastic recovery after separation, and low pattern failure. Adhesive energy between surface is found to be critical to successful pattern transfer without pattern failure. Finally, high imprinting temperature above glass transition temperature reduces the imprinting force.

Facile Fabrication Process for Graphene Nanoribbon Using Nano-Imprint Lithography(NIL) and Application of Graphene Pattern on Flexible Substrate by Transfer Printing of Silicon Membrane (나노임프린트 리소그래피 기술을 이용한 그래핀 나노리본 트랜지스터 제조 및 그래핀 전극을 활용한 실리콘 트랜지스터 응용)

  • Eom, Seong Un;Kang, Seok Hee;Hong, Suck Won
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.635-643
    • /
    • 2016
  • Graphene has shown exceptional properties for high performance devices due to its high carrier mobility. Of particular interest is the potential use of graphene nanoribbons as field-effect transistors. Herein, we introduce a facile approach to the fabrication of graphene nanoribbon (GNR) arrays with ~200 nm width using nanoimprint lithography (NIL), which is a simple and robust method for patterning with high fidelity over a large area. To realize a 2D material-based device, we integrated the graphene nanoribbon arrays in field effect transistors (GNR-FETs) using conventional lithography and metallization on highly-doped $Si/SiO_2$ substrate. Consequently, we observed an enhancement of the performance of the GNR-transistors compared to that of the micro-ribbon graphene transistors. Besides this, using a transfer printing process on a flexible polymeric substrate, we demonstrated graphene-silicon junction structures that use CVD grown graphene as flexible electrodes for Si based transistors.

Molecular Dynamics Study on the Pattern Transfer in Nanoimprint Lithography (분자 동역학을 이용한 나노임프린트 리소그래피에서의 패턴 전사에 관한 연구)

  • Kang Ji-Hoon;Kim Kwang-Seop;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.21 no.4
    • /
    • pp.177-184
    • /
    • 2005
  • The molecular dynamics simulation of nanoimprint lithography (NIL) using $SiO_2$ stamp and amorphous poly-(methylmethacrylate) (PNMA) film is performed to study pattern transfer in NIL. Force fields including bond, angle, torsion, van der Waals and electrostatic potential are used to describe the intermolecular and intramolecular force of PMMA molecules and $SiO_2$ stamp. Nose-Hoover thermostat is used to control the system temperature and cell multipole method is adopted to treat long range interactions. The deformation of PMMA film is observed during pattern transfer in the NIL process. For the detail analysis of deformation characteristics, the distributions of density and stress in PMHA film are calculated. The adhesion and friction forces are obtained by dividing the PMMA film into subregions and calculating the interacting force between subregion and stamp. Their effects on the pattern transfer are also discussed as varying the indentation depth and speed.