• Title/Summary/Keyword: 나노기판

Search Result 849, Processing Time 0.028 seconds

Recognization of Inflammable Gases Using Sensor Array and Principal Component Analysis (센서 어레이와 주성분 기법을 이용한 가연성 가스 인식)

  • Lee, Dae-Sik;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.108-117
    • /
    • 2001
  • A sensor array with 10 discrete sensors integrated on a substrate w3s developed for discriminating the kinds and quantities of inflammable gases, like butane, propane, methane, LPG, carbon monoxide. The sensor array consisted of 10 metal oxide semiconductor gas sensors using the nano-sized $SnO_2$ as base material and had differentiated sensitivity patterns to specific gas. The sensor array was designed with uniform thermal distribution and had also high sensitivity and good reproductivity to low gas concentration through nano-sized sensing materials with different additives. By using the sensing patterns of the sensor array at $400^{\circ}C$, we could reliably discriminate the kinds and quantities of the tested inflammable gases under the lower explosion limit through the principal component analysis(PCA).

  • PDF

Fabrication of Ceramic Line Pattern by UV-Nanoimprint Lithography of Inorganic Polymers (무기고분자의 나노임프린트법에 의한 세라믹 선형 패턴의 제조)

  • Park Jun-Hong;Pham Tuan-Anh;Lee Jae-Jong;Kim Dong-Pyo
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.407-411
    • /
    • 2006
  • The SiC-based ceramic nanopatterns were prepared by placing polydimethylsiloxane (PDMS) mold from DVD master on the spincoated polyvinylsilaeane (PVS) or allylhydridopolycaybosilane (AHPCS) as ceramic precursors to fabricate line pattern via UV-nanoimprint lithography (UV-NIL), and subsequent pyrolysis at $800^{\circ}C$ in nitrogen atmosphere. As the dimensional change of polymeric and ceramic patterns was comparatively investigated by AFM and SEM, the shrinkage in height was 38.5% for PVS derived pattern and 24.1% for AHPCS derived pattern while the shrinkage in width was 18.8% for PVS and 16.7% for AHPCS. It indicates that higher ceramic yield of the ceramic precursor resulted in less shrinkage, and the strong adhesion between the substrate and the pattern caused anisotropic shrinkage. This preliminary work suggests that NIL is a promissing route for fabricating ceramic MEMS devices, with the development on the shrinkage control.

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

Roll-type Micro Contact Printing for Fine Patterning of Metal Lines on Large Plastic Substrate (대면적 미세 금속전극 인쇄를 위한 원통형 마이크로 접촉 인쇄공정)

  • Kim, Jun-Hak;Lee, Mi-Young;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.7-14
    • /
    • 2011
  • This paper is related to a roll-type micro-contact printing process. The proper parameters such as coating velocity, inking velocity, printing velocity and printing pressure as well as Ag contents of Ag ink were extracted to perform the fine patterning of Ag electrodes. Additionally we developed a process for PDMS with high uniform thickness. Finally, we obtained the Ag fine electrodes on $4.5cm\;{\times}\;4.5cm$ plastic substrate with the line width of 10 um, thickness less than 300 nm, surface roughness less than 40 nm, and the specific resistance of $2.08\;{\times}\;10^{-5}{\Omega}{\cdot}cm$.

Fabrication, Performance Evaluation of Components of Planar Type MEMS Solid Propellant Thruster (평판형 MEMS 고체 추진제 추력기 요소 제작 및 성능 평가)

  • Park, Jong-Ik;Kwon, Se-Jjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.6
    • /
    • pp.581-586
    • /
    • 2008
  • The MEMS solid propellant thrusters have very low thrust level for applying to the propulsion system of micro/nano satellites or the side jet thruster of smart bombs. In this research, the fabrication possibility of planar type MEMS solid propellant thrusters that have enlarged burning surface area was examined and the safety of the structure of thruster during the firing test was confirmed. The performance of a micro igniter which is the key component of the MEMS solid propellant thruster was estimated by the ANSYS Icepak and evaluated by the experiment. Finally, the thrust was measured by the micro force sensor. The levels of thrust were 300, 600 mN in the case of K=15, 20.

Properties of Organic-Inorganic Protective Films on Flexible Plastic Substrates by Spray Coating Method (연성 플라스틱 기판위에 스프레이 코팅방법으로 제조한 유·무기 보호막의 특성)

  • Lee, Sang Hee;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.79-84
    • /
    • 2017
  • The solar cells should be protected from the moisture and oxygen in order to sustain the properties and reliability of the devices. In this research, we prepared the protection films on the flexible plastic substrates by spray coating method using organic-inorganic hybrid solutions. The protection characteristics were studied depending on the various process conditions (nozzle distance, thicknesses of the coatings, film structures). The organic-inorganic solutions for the protection film layer were synthesized by addition of $Al_2O_3$ ($P.S+Al_2O_3$) and $SiO_2$ ($P.S+SiO_2$) nano-powders into PVA (polyvinyl alcohol) and SA (sodium alginate) (P.S) organic solution. The optical transmittances of the protection film with the thicknesses of $5{\mu}m$ showed 91%. The optical transmittance decreased from 81.6% to 73.6% with the film thickness increased from $78{\mu}m$ to $178{\mu}m$. In addition, the protective films were prepared on the PEN (polyethylene naphthalate), PC (polycarbonate) single plastic substrates as well as the Acrylate film coated on PC substrate (Acrylate film/PC double layer), and $Al_2O_3$ film coated on PEN substrate ($Al_2O_3$ film/PEN double layer) using the $P.S+Al_2O_3$ organic-inorganic hybrid solutions. The optimum protection film structure was studied by means of the measurements of water vapor transmittance rate (WVTR) and surface morphology. The protective film on PEN/$Al_2O_3$ double layer substrate showed the best water protective property, indicating the WVTR value of $0.004gm/m^2-day$.

Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping (인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제)

  • Kim Joonkon;Woo H. J.;Choi H. W.;Kim G. D.;Hong W.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • Nanometric crystalline silicon (no-Si) embedded in dielectric medium has been paid attention as an efficient light emitting center for more than a decade. In nc-Si, excitonic electron-hole pairs are considered to attribute to radiative recombination. However the surface defects surrounding no-Si is one of non-radiative decay paths competing with the radiative band edge transition, ultimately which makes the emission efficiency of no-Si very poor. In order to passivate those defects - dangling bonds in the $Si:SiO_2$ interface, hydrogen is usually utilized. The luminescence yield from no-Si is dramatically enhanced by defect termination. However due to relatively high mobility of hydrogen in a matrix, hydrogen-terminated no-Si may no longer sustain the enhancement effect on subsequent thermal processes. Therefore instead of easily reversible hydrogen, phosphorus was introduced by ion implantation, expecting to have the same enhancement effect and to be more resistive against succeeding thermal treatments. Samples were Prepared by 400 keV Si implantation with doses of $1\times10^{17}\;Si/cm^2$ and by multi-energy Phosphorus implantation to make relatively uniform phosphorus concentration in the region where implanted Si ions are distributed. Crystalline silicon was precipitated by annealing at $1,100^{\circ}C$ for 2 hours in Ar environment and subsequent annealing were performed for an hour in Ar at a few temperature stages up to $1,000^{\circ}C$ to show improved thermal resistance. Experimental data such as enhancement effect of PL yield, decay time, peak shift for the phosphorus implanted nc-Si are shown, and the possible mechanisms are discussed as well.

UV 처리에 의한 T-OLED용 산화전극에 적합한 Ag 박막 연구: Nano-Mechanical 특성 분석을 중심으로

  • Lee, Gyu-Yeong;Kim, Su-In;Kim, Ju-Yeong;Gwon, Gu-Eun;Gang, Yong-Uk;Son, Ji-Won;Jeon, Jin-Ung;Kim, Min-Cheol;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.238-238
    • /
    • 2012
  • Ag (silver)의 일함수는 T-OLED (Top Emission Organic Light Emitting Diode)의 전극소자로 사용하기에는 다소 낮다는 단점이 있다(~4.3 eV). 이러한 단점을 해결하기 위한 대안으로 Ag 박막의 표면을 플라즈마 처리, UV 처리 및 열처리를 통하여 일함수를 높이는 연구가 진행 되어왔다(>5.0 eV). 하지만 현재의 대부분 연구는 후 처리된 박막의 일함수에 초점을 맞춰 연구가 진행 되어 박막의 nano-mechanical property에 대한 연구는 매우 부족하다. 따라서 본 논문에서는 AgOx 박막의 nano-mechanical property에 초점을 맞춰 분석을 실시하였다. 연구에 사용된 샘플은 Ag 박막을 유리기판 위에 rf-magnetron sputter 장치를 이용하여 100 W의 power로 150 nm 두께로 증착하였다. 증착된 Ag 박막은 $O_3$ 발생 UV 램프를 이용하여, 다양한 시간동안 UV 처리하였다(0~9분). 증착된 샘플은 Four-point probe, nanoindenter 장비를 이용하여 nano-mechanical property를 분석하였다. 실험 결과 UV 처리 시간이 0, 1분에서 면저항이 0.16, 0.50 ${\Omega}$/sq로 급격한 변화가 나타났으나, 반면 3분 이후 9분의 샘플의 경우, 0.55 ${\Omega}$/sq에서 0.24, 0.20, 0.15 ${\Omega}$/sq로 감소하여 전기적 특성변화를 볼 수 있었다. 또한 nanoindenting 결과 UV 처리한 박막의 극 표면 경도 값의 변화는 0~5분 처리한 샘플의 경우, 물리적인 경도가 증가하는 형태를 보이며 UV 처리를 5분간 했을때 7.89 GPa로 최고의 경도를 가진다. 그 이후부터는 6.97, 3.46 GPa의 결과로 박막의 경도가 감소되는 결과를 얻었다. 이러한 결과로부터 Ag 박막의 후처리에 따른 Ag 물질의 산화 및 결정상태에 따라 박막 내에 존재하는 residual stress를 분석할 수 있다.

  • PDF

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Synthesis of the Carbon Nano/micro Coils Applicable to the Catalyst Support to Hold the Tiny Catalyst Grain (매우 작은 크기의 촉매 알갱이를 지지하기 위한 촉매 지지대용 탄소 나노/마이크로 코일의 합성)

  • Park, Chan-Ho;Kim, Sung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.277-284
    • /
    • 2013
  • Carbon coils could be synthesized using $C_2H_2/H_2$ as source gases and $SF_6$ as an incorporated additive gas under thermal chemical vapor deposition system. The Ni layer on the $SiO_2$ substrate was used as a catalyst for the formation of the carbon coils. The characteristics (formation densities, morphologies, and geometries) of the as-grown carbon coils on the substrate with or without the $H_2$ plasma pretreatment process were investigated. By the relatively short time (1 minute) $H_2$ plasma pretreatment on the Ni catalyst layered-substrate prior to the carbon coils synthesis reaction, the dominant formation of the carbon microcoils on the substrate could be achieved. After the relatively long time (30 minutes) $H_2$ plasma pretreatment process, on the other hand, we could obtain the noble-shaped geometrical nanostructures, namely the formation of the numerous carbon nanocoils along the growth of the carbon microcoils. This noble-shaped geometrical nanostructure seemed to play a promising role as the good catalyst support for holding the very tiny Ni catalyst grains.