• Title/Summary/Keyword: 기초탐구과정

Search Result 235, Processing Time 0.023 seconds

Improving the 2022 Revised Science Curriculum: Elementary School "Earth and Universe" Units (2022 개정 과학과 교육과정 개선 방향 고찰 - 초등학교 '지구와 우주' 영역을 중심으로 -)

  • Yu, Eun-Jeong;Park, Jae Yong;Lee, Hyundong
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.173-185
    • /
    • 2022
  • The purpose of this study is to present a reflective review of the earth and universe units from the revised elementary curriculum of 2007-2015 and suggest changes in the 2022 revised curriculum. For this purpose, we conducted an FGI with earth science educators and elementary school teachers regarding the content elements and system, the achievement standards and inquiry activity composition, and the vertical and horizontal curriculum connectivity. Free response and weighted hierarchical analysis items were incorporated into the FGI to ensure logical consistency of the inductively derived improvement. This analysis revealed that the composition of units by grade group had been unevenly distributed among each of the "earth systems" until the 2015 revised curriculum was finalized. Furthermore, the basic concept was still insufficient. We suggest that achievement standards centered on the learning content and skills must state specific scientific core competencies, and inquiry activities should include rigorous critical thinking, student written responses, and student inquiry and analysis. In the hierarchical analysis items, FGI emphasized the inclusion of essential content elements rather than reduction of content elements, understanding-oriented concept learning rather than interest-centered phenomenon learning, basic concept division learning before integration between subjects, and expanding vertical-horizontal connectivity rather than repeating and advancing learning. There is a limit to the generalizing the suggestions proposed in this study to the common opinion of elementary earth science experts. However, since the main vision of the 2022 revised curriculum is to gather opinions through educational entities' participation in a variety of educational subjects, it is suggested that our results should be incorporated as one of the opinions proposed for the 2022 curriculum revision.

A Study on Mathematical Investigation Activity through Using One Mathematical Fact (구체적 수학탐구활동 사례를 통한 학교현장 수학 탐구방법 탐색)

  • Suh, Bo Euk
    • Communications of Mathematical Education
    • /
    • v.35 no.2
    • /
    • pp.193-212
    • /
    • 2021
  • This study is to support the school's mathematics exploration activities. Mathematics exploration is a very important mathematical activity not only for mathematics teachers, but also for students. Looking at the development of mathematics, it has been extended from one mathematical fact to a new mathematical fact. Mathematics exploration activities are not unique to mathematicians, and opportunities are equally given to all ordinary people who are learning mathematics and teaching mathematics. Therefore, the purpose of this study is to develop a method of mathematics exploration activities that teachers and students can perform in schools, based on mathematics exploration activities based on one mathematical fact. Specifically, the cosine law was selected as one mathematical fact, and mathematical exploration activities were performed based on the cosine law. By analyzing the results of these mathematics exploration activities, we developed a method to explore school mathematics. Through the results of this study, it is expected that mathematics exploration activities will be conducted equally by students and teachers in the mathematics classroom.

A Theoretical Study on Abduction as an Inquiry Method in Earth Science (지구과학의 한 탐구 방법으로서 귀추법에 대한 이론적 고찰)

  • Oh, Phil-Seok;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.25 no.5
    • /
    • pp.610-623
    • /
    • 2005
  • This was a theoretical study of which the goal was to provide a foundation for developing and implementing earth science inquiry activities based on abduction as a scientific inquiry method. Through a review of relevant literature, the study examined the nature of earth science in terms of the goals of earth science inquiry and the characteristics of what is investigated in earth science. It also explored the forms and meanings of abduction, thinking strategies used in the abductive inference, and the abductive inquiry model. Abduction is the process of inferring certain rules (e.g., scientific facts, principles, laws) and providing explanatory statements or hypotheses in order to explain some phenomena. This method was found to be well-suited to the earth science inquiry which studies the causes and processes of natural phenomena in the earth and space environment. Abduction has the nature of ampliative, selective, evaluative, and creative inference, and several thinking strategies, including reconstruction of data, heuristic generalization, analogy, existential, conceptual combination, and elimination strategies, are employed for inferring rules and suggesting hypotheses. This study found the abductive inquiry model to be adaptable to earth science classrooms, and it is therefore suggested that earth science instructions should be based on the abductive method and that research work concerning the abductive inquiry in the classroom should follow.

Analysis on Knowledge State of Inquiry Abilities of Elementary School Students on Electric Circuits (초등학생의 전기회로 탐구능력에 대한 지식상태 분석)

  • Lee, Hyong-Jae;Park, Sang-Tae
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.5
    • /
    • pp.857-870
    • /
    • 2015
  • Concerning elementary school science subject electric circuit units, which are regarded as difficult by teachers and students, this study aims to use the knowledge state analysis method along with interviews to analyze the knowledge state and hierarchy of inquiry abilities. Before and after applying the electric circuit inquiry abilities module, the question items aimed at assessing the basic inquiry abilities and integrative inquiry abilities for electric circuits were presented to students, and their knowledge state was analyzed along with interviews. Through analysis of the knowledge structure and hierarchy of inquiry abilities about electric circuits, the way of thinking of teachers who taught inquiry abilities, and the way of thinking of students were found to be visually different from each other, and this is an important factor that should not be neglected in the process of teaching and learning about inquiry abilities and should be considered. In addition, the presentation of the knowledge state of and hierarchical relations between inquiry abilities factors can offer implications for guidance on students' learning about inquiry abilities.

A Study on the Base of Learning and Teaching Theories for School Libraries (학교도서관의 교수 - 학습 이론적 기초에 관한 연구)

  • 함명식
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.13 no.2
    • /
    • pp.197-219
    • /
    • 2002
  • Education is an intentional change of human behaviors. This change is implemented through the learning process of humans. The principles in the learning process and its psychological mechanism are based on learning theories. The objective insight about how they are related with school libraries as a basic organization supporting school education, what they can contribute and what their research methodologies are is a base for educational and academic research of school libraries. This study at first is to investigate learning and teaching theories for school libraries based on behavioral learning theories, cognitive learning theories and constructive learning theories which are general trends for learning theories. Then it is to introduce new theory 'library-based education approach (LBEA)'as an educational base of school libraries.

  • PDF

The Study on Extension of Regular Polygon Using Cabri Geometry II (기하프로그램을 활용한 정다각형 외연의 확장에 대한 연구)

  • Suh, Bo-Euk
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.1
    • /
    • pp.183-197
    • /
    • 2012
  • Geometry having long history of mathematics have important role for thinking power and creativity progress in middle school. The regular polygon included in plane geometry was mainly taught convex regular polygon in elementary school and middle school. In this study, we investigated the denotation's extension of regular polygon by mathematical basic knowledge included in school curriculum. For this research, first, school mathematical knowledge about regular polygon was analyzed. And then, basic direction of research was established for inquiry. Second, based on this analysis inductive inquiry activity was performed with research using geometry software(Cabri Geometry II). Through this study the development of enriched learning material and showing the direction of geometry research is expected.

  • PDF

Analysis of Inquiry Teaching Levels of Beginning Science Teachers in Middle School Science Laboratories (중학교 과학 실험 수업에서 초임 과학 교사들의 탐구 지도 수준 분석)

  • Jeong, Jin-Woo;Lee, Keun-June;Kim, Jin-Kuk
    • Journal of the Korean earth science society
    • /
    • v.27 no.4
    • /
    • pp.364-373
    • /
    • 2006
  • The purpose of this study is to investigate inquiry levels in the laboratory practices of beginning middle school science teachers. For this research eight teachers were chosen among a pool of beginning teachers. Then four finalists were chosen individually by interviews. Topics associated with hands-on activity experiments were provided by the author. In order to analyze teaching-skill development, classroom observations were made under the same topic after one year. The inquiry levels of four novice teachers were confirmation or structured inquiry but the inquiry levels were not out of confirmation or structured inquiry levels when those compared to last year's one. This study contributes to the professional development of teachers and provides various informations for instructional development of beginning teachers.

Development and Application of Integrative STEM (Science, Technology, Engineering and Mathematics) Education Model Based on Scientific Inquiry (과학 탐구 기반의 통합적 STEM 교육 모형 개발 및 적용)

  • Lee, Hyonyong;Kwon, Hyuksoo;Park, Kyungsuk;Oh, Hee-Jin
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.63-78
    • /
    • 2014
  • Integrative STEM education is an engineering design-based learning approach that purposefully integrates the content and process of STEM disciplines and can extend its concept to integration with other school subjects. This study was part of fundamental research to develop an integrative STEM education program based on the science inquiry process. The specific objectives of this study were to review relevant literature related to STEM education, analyze the key elements and value of STEM education, develop an integrative STEM education model based on the science inquiry process, and suggest an exemplary program. This study conducted a systematic literature review to confirm key elements for integrative STEM education and finally constructed the integrative STEM education model through analyzing key inquiry processes extracted from prior studies. This model turned out to be valid because the average CVR value obtained from expert group was 0.78. The integrative STEM education model based on the science inquiry process consisted of two perspectives of the content and inquiry process. The content can contain science, technology, engineering, and liberal arts/artistic topics that students can learn in a real world context/problem. Also, the inquiry process is a problem-solving process that contains design and construction and is based on the science inquiry. It could integrate the technological/engineering problem solving process and/or mathematical problem solving process. Students can improve their interest in STEM subjects by analyzing real world problems, designing possible solutions, and implementing the best design as well as acquire knowledge, inquiry methods, and skills systematically. In addition, the developed programs could be utilized in schools to enhance students' understanding of STEM disciplines and interest in mathematics and science. The programs could be used as a basis for fostering convergence literacy and cultivating integrated and design-based problem-solving ability.

The Effect of the Specific Open-inquiry Lesson on the Elementary Student's Science-related Attitude, Science Process Skill and the Instructing Teachers' Cognition about Open-inquiry (자유탐구 수업이 초등학생의 과학적 태도 및 과학탐구능력에 미치는 영향과 지도교사들의 자유탐구에 대한 인식 조사)

  • Lee, Hyeong Cheol;Lee, Jung Hwa
    • Journal of Science Education
    • /
    • v.34 no.2
    • /
    • pp.405-420
    • /
    • 2010
  • The purpose of this study was to contrive the specific teaching plans based on the frame of 2007 revised science curriculum for applying open-inquiry lesson in real education situation and to research the effects of open-inquiry lesson on the student's science-related attitude, science process skill, and to investigate instructing teachers' cognition about open-inquiry. For this study, two fifth grade classes were chosen, one class was the experimental group, who were taught by open-inquiry based lesson, and another was the comparative group, who were taught by traditional method based lesson. The findings of this study were as follows: After open-inquiry lesson, the experimental group students came to enjoy open-inquiry learning and had the positive thought about it. After open-inquiry lesson, the experimental group marked higher mean score than the comparative group in science-related attitude's field but didn't showed the meaningful difference. On the other hand, in science process skill's field, the experimental group showed the significant higher improvement than the comparative one, especially in the subordinate area of basic science process skill. Finally, teachers who instructed students open-inquiry lesson thought open-inquiry lesson is the self-directed problem solving learning which raise the student's science process skill and interest. And the teachers thought the obstacles to instruct open-inquiry lesson are the lack of the student's cognition about open-inquiry and the insufficient circumstance for open-inquiry lesson. Therefore the teachers argued that the prerequisite for settling open-inquiry lesson successfully is to develope open-inquiry lesson curricula and teaching materials.

  • PDF

Study on Continuity of Elementary Mathematics Curriculum and Nuri Curriculum (유치원 교육과정과 초등수학 교육과정의 내용 연계성 분석 -누리과정과 2009 개정 수학과 교육과정을 대상으로-)

  • Chang, Hyewon;Lee, Hwayoung;Lim, Miin
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.2
    • /
    • pp.207-223
    • /
    • 2015
  • This study aims to find ways for securing continuity of elementary mathematics curriculum and kindergarten curriculum. To do this, we considered the status of 'mathematical exploration' in Nuri curriculum and analysed the correspondence of content-domains and the continuity between Nuri curriculum for ages three to five and 2009 revised national elementary mathematics curriculum, based on the reconstructed achievement criteria. The result of these analyses reveals that the classification of five content-domains both for 'mathematical exploration' of Nuri curriculum and for 2009 revised national elementary mathematics curriculum coincides. We also recognized the reconstructed achievement criteria which are considered as reverse continuity or as discontinuity of Nuri curriculum and 2009 revised national elementary mathematics curriculum in all the five content domains. The former means being lower in levels or reduction in ranges from Nuri curriculum to elementary one. The latter means that some reconstructed achievement criteria are included in only one of the two curriculum. Based on these results, we suggested several ways to secure the continuity between Nuri curriculum and 2009 revised national elementary mathematics curriculum in the perspective of mathematics education.