• 제목/요약/키워드: 기계.화학적 평탄화

검색결과 38건 처리시간 0.021초

CMP공정에 의한 CdTe 박막의 표면 및 광학 특성 거동 (Behavior of surfacial and optical properties of CdTe thin films by CMP process)

  • 박주선;나한용;고필주;김남훈;양정태;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.111-111
    • /
    • 2008
  • 태양전지는 태양에너지를 직접 전기에너지로 변환시켜주는 광전 소자로서 구조적으로 단순하고 제조 공정도 비교적 간단하지만, 실용화를 위해서는 비용적인 측면이 많은 걸림돌이 되고 있다. 기존의 실리콘 태양전지는 낮은 광흡수율, 고비용임에도 불구하고 가장 많이 활용되고 있는 태양전지 기술이다. 그러나 태양전지의 경제성 향상과 실용화를 위해서는 기존의 실리콘 태양전지 보다 고효율 및 고신뢰도의 박막형 태양전지의 개발이 필요하다. 박막헝 태양전지의 재료로는 비정질 실리콘, 다결정 실리콘. CIGS, CdTe 등이 있다. 그 중에서도 박막형 태양전지에 광흡수층 물질로는 밴드갭 에너지 (l.4eV 부근), 변환 효율, 경제성 등을 고려했을 때 II-VI족 화합물인 CdTe가 가장 적합한 것으로 각광받고 있다. 하지만 아직까지 실리콘 태양전지에 비해 효율이 많이 떨어지는 단점을 가지고 있기 때문에 효율을 더 끌어올리기 위한 연구가 활발히 진행되고 있는 실정이다. 또한 CMP(chemical mechanical polishing) 공정은 반도체 박막 분야뿐만 아니라 물리, 화학 반응의 기초 연구에도 널리 응용이 되는 기술로써, 시료와 연마 패드 사이의 회전마찰에 의한 기계적 연마와 연마제 (abrasive) 에 의한 화학적 에칭으로 박막 표면을 평탄화하는 기술이다. 본 연구에서는 sputtering 법에 의해 증착된 CdTe 박막에 CMP 공정을 적용하여 표면 특성을 개선한 뒤 태양전지 변환 효율과 직접적인 연관성을 가지고 있는 표면 및 광특성의 변화를 CMP 공정 전과 후로 비교하였다. 표면의 변화를 관찰하기 위해서 AFM(atomic forced microscope) 과 SEM(scanning electron microscopy) 을 이용하였으며, 광특성의 비교를 위해서 흡수율과 PL특성을 측정하였다.

  • PDF

전기화학 기계적 연마를 이용한 Cu 배선의 평탄화 (Planarizaiton of Cu Interconnect using ECMP Process)

  • 정석훈;서헌덕;박범영;박재홍;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제20권3호
    • /
    • pp.213-217
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing(CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical polishing(ECMP) or electro-chemical mechanical planarization was introduced to solve the technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

화학적 기계적 연마 공정을 통한 bulk AlN 단결정의 표면 가공 (Optimization of chemical mechanical polishing for bulk AlN single crystal surface)

  • 이정훈;박철우;박재화;강효상;강석현;이희애;이주형;인준형;강승민;심광보
    • 한국결정성장학회지
    • /
    • 제28권1호
    • /
    • pp.51-56
    • /
    • 2018
  • PVT법으로 성장된 AlN 단결정의 표면 평탄화 최적화 하기 위하여 기계적 연마 후 $SiO_2$ slurry를 이용한 CMP 공정을 진행하였고 이에 따른 표면 형상, slurry 변화에 따른 가공 특성을 분석하였다. Slurry의 pH가 표면 연마 과정에 미치는 영향을 알아보기 위해 $SiO_2$ slurry의 pH를 조절하였으며, 제타전위측정기를 통해 각각의 pH에 따른 zeta potential의 영향과 MRR(material removal rate) 결과를 비교하였으며, 최종적으로 원자간력 현미경(atomic force microscope)을 이용한 표면 거칠기 RMS(0.2 nm)를 얻을 수 있었다.

DHF를 적용한 웨이퍼의 층간 절연막 평탄화에 관한 연구 (A Study on ILD(Interlayer Dielectric) Planarization of Wafer by DHF)

  • 김도윤;김형재;정해도;이은상
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.149-158
    • /
    • 2002
  • Recently, the minimum line width shows a tendency to decrease and the multi-level increases in semiconductor. Therefore, a planarization technique is needed and chemical mechanical polishing(CMP) is considered as one of the most suitable process. CMP accomplishes a high polishing performance and a global planarization of high quality. However there are several defects in CMF, such as micro-scratches, abrasive contaminations and non-uniformity of polished wafer edges. Wet etching process including spin-etching can eliminate the defects of CMP. It uses abrasive-free chemical solution instead of slurry. On this study, ILD(Interlayer-Dielectric) was removed by CMP and wet etching process using DHF(Diluted HF) in order to investigate the possibility of planrization by wet etching mechanism. In the thin film wafer, the results were evaluated from the viewpoint of material removal rate(MRR) and within wafer non-uniformity(WIWNU). And the pattern step heights were also compared for the purpose of planarity characterization of the patterned wafer. Moreover, Chemical polishing process which is the wet etching process with mechanical energy was introduced and evaluated for examining the characteristics of planarization.

CMP 컨디셔너의 다이아몬드 입자 모양이 연마 패드 표면 형상 제어에 미치는 영향 (Effect of Diamond Abrasive Shape of CMP Conditioner on Polishing Pad Surface Control)

  • 이동환;이기훈;정선호;김형재;조한철;정해도
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.330-336
    • /
    • 2019
  • Conditioning is a process involving pad surface scraping by a moving metallic disk that is electrodeposited with diamond abrasives. It is an indispensable process in chemical-mechanical planarization, which regulates the pad roughness by removing the surface residues. Additionally, conditioning maintains the material removal rates and increases the pad lifetime. As the conditioning continues, the pad profile becomes unevenly to be deformed, which causes poor polishing quality. Simulation calculates the density at which the diamond abrasives on the conditioner scratch the unit area on the pad. It can predict the profile deformation through the control of conditioner dwell time. Previously, this effect of the diamond shape on conditioning has been investigated with regard to microscopic areas, such as surface roughness, rather than global pad-profile deformation. In this study, the effect of diamond shape on the pad profile is evaluated by comparing the simulated and experimental conditioning using two conditioners: a) random-shaped abrasive conditioner (RSC) and b) uniform-shaped abrasive conditioner (USC). Consequently, it is confirmed that the USC is incapable of controlling the pad profile, which is consistent with the simulation results.

계면활성제 함량 조절을 통한 구리 하이브리드 구조물의 화학 기계적 평탄화 (Chemical Mechanical Planarization of Cu Hybrid Structure by Controlling Surfactant)

  • 장수천;안준호;박재홍;정해도
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.587-590
    • /
    • 2012
  • Recently, the demand for the miniaturization of package substrates has been increasing. Technical innovation has occurred to move package substrate manufacturing steps into CMP applications. Electroplated copper filled trenches on the substrate need to be planarized for multi-level wires of less than $10{\mu}m$. This paper introduces a chemical mechanical planarization (CMP) process as a new package substrate manufacturing step. The purpose of this study is to investigate the effect of surfactant on the dishing and erosion of Cu patterns with the lines and spaces of around $10/10{\mu}m$ used for advanced package substrates. The use of a conventional Cu slurry without surfactant led to problems, including severe erosion of $0.58{\mu}m$ in Cu patterns smaller than $4/6{\mu}m$ and deep dishing of $4.2{\mu}m$ in Cu patterns larger than $14/16{\mu}m$. However, experimental results showed that the friction force during Cu CMP changed to lower value, and that dishing and erosion became smaller simultaneously as the surfactant concentration became higher. Finally, it was possible to realize more globally planarized Cu patterns with erosion ranges of $0.22{\mu}m$ to $0.35{\mu}m$ and dishing ranges of $0.37{\mu}m$ to $0.69{\mu}m$ by using 3 wt% concentration of surfactant.

산화막CMP의 연마균일도 향상을 위한 웨이퍼의 에지형상제어 (Wafer Edge Profile Control for Improvement of Removal Uniformity in Oxide CMP)

  • 최성하;정호빈;박영봉;이호준;김형재;정해도
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.289-294
    • /
    • 2012
  • There are several indicators to represent characteristics of chemical mechanical planarization (CMP) such as material removal rate (MRR), surface quality and removal uniformity on a wafer surface. Especially, the removal uniformity on the wafer edge is one of the most important issues since it gives a significant impact on the yield of chip production on a wafer. Non-uniform removal rate at the wafer edge (edge effect) is mainly induced by a non-uniform pressure from nonuniform pad curvature during CMP process, resulting in edge exclusion which means the region that cannot be made to a chip. For this reason, authors tried to minimize the edge exclusion by using an edge profile control (EPC) ring. The EPC ring is equipped on the polishing head with the wafer to protect a wafer from the edge effect. Experimental results showed that the EPC ring could dramatically minimize the edge exclusion of the wafer. This study shows a possibility to improve the yield of chip production without special design changes of the CMP equipment.

전기화학 기계적 연마를 이용한 Cu 배선의 평탄화 (Planarization of Cu intereonnect using ECMP process)

  • 정석훈;서현덕;박범영;박재홍;이호준;오지헌;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.79-80
    • /
    • 2007
  • Copper has been used as an interconnect material in the fabrication of semiconductor devices, because of its higher electrical conductivity and superior electro-migration resistance. Chemical mechanical polishing (CMP) technique is required to planarize the overburden Cu film in an interconnect process. Various problems such as dishing, erosion, and delamination are caused by the high pressure and chemical effects in the Cu CMP process. But these problems have to be solved for the fabrication of the next generation semiconductor devices. Therefore, new process which is electro-chemical mechanical planarization/polishing (ECMP) or electro-chemical mechanical planarization was introduced to solve the. technical difficulties and problems in CMP process. In the ECMP process, Cu ions are dissolved electrochemically by the applying an anodic potential energy on the Cu surface in an electrolyte. And then, Cu complex layer are mechanically removed by the mechanical effects between pad and abrasive. This paper focuses on the manufacturing of ECMP system and its process. ECMP equipment which has better performance and stability was manufactured for the planarization process.

  • PDF