• Title/Summary/Keyword: 금속화

Search Result 2,191, Processing Time 0.031 seconds

Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process (나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구)

  • Kim, Jongryul;Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.762-769
    • /
    • 2008
  • Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.

Ethylene Gas Indicator for Monitoring Climacteric Fruit Ripening (과일 숙성 에틸렌가스 지시계 기술개발 현황)

  • Shin, Dong Un;Lee, Seung Ju
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.47-53
    • /
    • 2022
  • Recently, intelligent packaging of foods has been increasingly developed in response to the growing interest of consumers in checking food quality. Indicators, an important element in intelligent packaging, change color to detect specific substances or indicate food quality changes. Gas indicators can be built into food packaging to detect volatile substances that are released when food quality changes. Ethylene gas is produced as climacteric fruits ripen. Climacteric fruit ripening results from a rapid increase in ethylene production and respiration. In the case of packaged fruits, the ethylene gas concentration in the headspace is closely related to the ripeness of each fruit variety. If an ethylene gas indicator that can be used in fruit packaging is available, the consumer will be able to eat the fruit at the optimal time. In this paper, the characteristics and pros and cons of the ethylene gas indicators developed so far were analyzed by reviewing various types of indicators such as metal reduction-based indicator, fluorescence-based indicator, pH indicator-based indicator, and liposome-based indicator.

Fabrication of 3D Paper-based Analytical Device Using Double-Sided Imprinting Method for Metal Ion Detection (양면 인쇄법을 이용한 중금속 검출용 3D 종이 기반 분석장치 제작)

  • Jinsol, Choi;Heon-Ho, Jeong
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2022
  • Microfluidic paper-based analytical devices (μPADs) have recently been in the spotlight for their applicability in point-of-care diagnostics and environmental material detection. This study presents a double-sided printing method for fabricating 3D-μPADs, providing simple and cost effective metal ion detection. The design of the 3D-μPAD was made into an acryl stamp by laser cutting and then coating it with a thin layer of PDMS using the spin-coating method. This fabricated stamp was used to form the 3D structure of the hydrophobic barrier through a double-sided contact printing method. The fabrication of the 3D hydrophobic barrier within a single sheet was optimized by controlling the spin-coating rate, reagent ratio and contacting time. The optimal conditions were found by analyzing the area change of the PDMS hydrophobic barrier and hydrophilic channel using ink with chromatography paper. Using the fabricated 3D-μPAD under optimized conditions, Ni2+, Cu2+, Hg2+, and pH were detected at different concentrations and displayed with color intensity in grayscale for quantitative analysis using ImageJ. This study demonstrated that a 3D-μPAD biosensor can be applied to detect metal ions without special analysis equipment. This 3D-μPAD provides a highly portable and rapid on-site monitoring platform for detecting multiple heavy metal ions with extremely high repeatability, which is useful for resource-limited areas and developing countries.

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

Synthesis of porous-structured (Ni,Co)Se2-CNT microsphere and its electrochemical properties as anode for sodium-ion batteries (다공성 구조를 갖는 (Ni,Co)Se2-CNT microsphere의 합성과 소듐 이차전지 음극활물질로서의 전기화학적 특성 연구)

  • Yeong Beom Kim;Gi Dae Park
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.178-184
    • /
    • 2023
  • Transition metal chalcogenides have garnered significant attention as anode materials for sodium-ion batteries due to their high theoretical capacity. Nevertheless, their practical application is impeded by their limited lifespan resulting from substantial volume expansion during cycling and their low electrical conductivity. To tackle these issues, this study devised a solution by synthesizing a nanostructured anode material composed of porous CNT (carbon nanotube) spheres and (Ni,Co)Se2 nanocrystals. By employing spray pyrolysis and subsequent heat treatments, a porous-structured (Ni,Co)Se2-CNT composite microsphere was successfully synthesized, and its electrochemical properties as an anode for sodium-ion batteries were evaluated. The synthesized (Ni,Co)Se2-CNT microsphere possesses a porous structure due to the nanovoids that formed as a result of the decomposition of the polystyrene (PS) nanobeads during spray pyrolysis. This porous structure can effectively accommodate the volume expansion that occurs during repeated cycling, while the CNT scaffold enhances electronic conductivity. Consequently, the (Ni,Co)Se2-CNT anode exhibited an initial discharge capacity of 698 mA h g-1 and maintained a high discharge capacity of 400 mA h g-1 after 100 cycles at a current density of 0.2 A g-1.

Verification Study on the Treasure #634 of Silla Face-Inlaid Glass Bead: Focusing on the Design and Cultural Symbolic Elements (보물 제634호 신라 인면 상감 유리구슬의 검증 연구: 디자인과 문화 상징요소를 중심으로)

  • Misuk Choi;Hyo Jeong Lee;Youngjoo Na
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.71-92
    • /
    • 2023
  • This study investigates the symbolism and meaning of the bead design, its relationship with the Silla culture, and the conditions of glass bead manufacturing to verify the theory of Silla's production of Silla face-inlaid glass beads with excellent artistry and technology. The research method includes investigating the design analysis, ancient documents, myths, relics, glass, and metal production techniques. Moreover, Hongshan cultural relics and other cases of inlaid glass beads were collected. There are records in the literature that the people of Makhan, Buyeo and Silla of ancient Korea people considered beads as treasures and used them for accessories. It was confirmed that all the design elements of the bead-patterned hair topknot, golden crown, birds, and flower trees were closely related to the myth of Kim Al-ji of Silla, the oviparous tales and the sacred birds and divine beasts of the north. Moreover, the pattern and arrangements were found to be similar in other Silla relics. The origin of beads and face pendants was Hongsan culture, and a stone cast for beads was discovered in Bukpyo of Gojoseon, the lower-level culture of Hajiajeom. In addition, excavating inlaid glass beads from Sik-ri tombs of Korea and a face-inlaid glass bead from Toganmori tombs in Japan confirms the theory of Silla's production. The fact that the Baekje people of ancient Korea had a glass bead manufacturing office in Japan in the fifth centuries suggests that the Silla people also had a manufacturing plant in Java, Indonesia, because this place was a crossroads of Silla's Sea Silk Road and a source of raw materials and labors with a close relationship to Silla. Therefore, the face-inlaid glass bead was indeed self-made by Silla, who possessed the tradition of bead myths and hair topknot, and the high-level skills such as gold crowns and metal inlays.

The Stability Appraisement on Cultural Property Material with the Replacing Fumigation Gas of Methyl Bromide (Methyl Bromide를 대체하는 훈증 가스의 문화재 재질 안정성 평가)

  • Kang, Dai-Ill
    • Journal of Conservation Science
    • /
    • v.25 no.3
    • /
    • pp.283-291
    • /
    • 2009
  • Methyl Bromide that was used as fumigation gas turned out to be the substance of destroying the ozone layer. For that reason, at the Montreal Protocol in 1987 the use of methyl bromide was forbidden starting 2005 in the advanced country. Also according to the 2007 Bali Protocolly methyl bromide is expected to be forbidden and therefore the purpose of this study is to find out the effects of substitution fumigation gas (Ethylene Oxide+HFC 134a, Methyl Iodide, Cyanogen and Argon) on the metal(silver, copper and iron), wood(oregon pine), pigment(yellow, red, blue, white and black), textile(hemp, ramie, jute, silk1 and silk2 / indigo, safflower and cork) and paper. After the fumigation test, ethylene oxide+HFC 134a did not have changes in the weight and color of the material itself before and after the experiment. On exterior alteration, color change occurred partly on paper and metal. Also, in most materials color change extent was 0.5 to 1.5 on the average and showed scanty difference. The materials after the fumigation test with methyl iodide did not show weight changes after the test. However, color changes more than 1.0 was shown in most of the materials especially in dyed textile material. In blue pigment, the discoloration on the surface could be seen by naked eyes. Fumigation test with cyanogen gas did not show weight changes and discoloration is more than 1.5 before and after the test. The weight changes of test materials with the argon gas was decreased about 3 to 6%. It can be observed that discoloration on paper was generated. Color changes can be seen on jute dyed with safflower and cork for two weeks with argon gas and the extent was 6.3 and 6.0.

  • PDF

Mineral Geochemistry of the Albite-Spodumene Pegmatite in the Boam Deposit, Uljin (울진 보암광산의 조장석-스포듀민 페그마타이트의 광물 지화학 조성 연구)

  • Park, Gyuseung;Park, Jung-Woo;Heo, Chul-Ho
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • In this study, we investigated the mineral geochemistry of the albite-spodumene pegmatite, associated exogreisen, and wall rock from the Boam Li deposit, Wangpiri, Uljin, Gyeongsangbuk-do, South Korea. The paragenesis of the Boam Li deposit consists of two stages; the magmatic and endogreisen stages. In the magmatic stage, pegmatite dikes mainly composed of spodumene, albite, quartz, and K-feldspar intruded into the Janggun limestone formation. In the following endogreisen stage, the secondary fine-grained albite along with muscovite, apatite, beryl, CGM(columbite group mineral), microlite, and cassiterite were precipitated and partly replaced the magmatic stage minerals. Exogreisen composed of tourmaline, quartz, and muscovite develops along the contact between the pegmatite dike and wall rock. The Cs contents of beryl and muscovite and Ta/(Nb+Ta) ratio of CGM are higher in the endogreisen stage than the magmatic stage, suggesting the involvement of the more evolved melts in the greisenization than in the magmatic stage. Florine-rich and Cl-poor apatite infer that the parental magma is likely derived from metasedimentary rock (S-type granite). P2O5 contents of albite in the endogreisen stage are below the detection limit of EDS while those of albite in the magmatic stage are 0.28 wt.% on average. The lower P2O5 contents of the former albite can be attributed to apatite and microlite precipitation during the endogreisen stage. Calcium introduced from the adjacent Janggun formation may have induced apatite crystallization. The interaction between the pegmatite and Janggun limestone is consistent with the gradual increase in Ca and other divalent cations and decrease in Al from the core to the rim of tourmaline in the exogreisen.

Preparation of poly-crystalline Si absorber layer by electron beam treatment of RF sputtered amorphous silicon thin films (스퍼터링된 비정질 실리콘의 전자빔 조사를 통한 태양전지용 흡수층 제조공정 연구)

  • Jeong, Chaehwan;Na, Hyeonsik;Nam, Daecheon;Choi, Yeonjo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.81-81
    • /
    • 2010
  • 유리기판위에 큰 결정입자를 갖는 실리콘 (폴리 실리콘) 박막을 제조하는 것은 가격저가화 및 대면적화 측면 같은 산업화의 높은 잠재성을 가지고 있기 때문에 그동안 많은 관심을 가지고 연구되어 오고 있다. 다양한 방법을 이용하여 다결정 실리콘 박막을 만들기 위해 노력해 오고 있으며, 태양전지에 응용하기 위하여 연속적이면서 10um이상의 큰 입자를 갖는 다결정 실리콘 씨앗층이 필요하며, 고속증착을 위해서는 (100)의 결정성장방향 등 다양한 조건이 제시될 수 있다. 다결정 실리콘 흡수층의 품질은 고품질의 다결정 실리콘 씨앗층에서 얻어질 수 있다. 이러한 다결정 실리콘의 에피막 성장을 위해서는 유리기판의 연화점이 저압 화학기상증착법 및 아크 플라즈마 등과 같은 고온기반의 공정 적용의 어려움이 있기 때문에 제약 사항으로 항상 문제가 제기되고 있다. 이러한 관점에서 볼때 유리기판위에 에피막을 성장시키는 방법으로 많지 않은 방법들이 사용될 수 있는데 전자 공명 화학기상증착법(ECR-CVD), 이온빔 증착법(IBAD), 레이저 결정화법(LC) 및 펄스 자석 스퍼터링법 등이 에피 실리콘 성장을 위해 제안되는 대표적인 방법으로 볼 수 있다. 이중에서 효율적인 관점에서 볼때 IBAD는 산업화측면에서 좀더 많은 이점을 가지고 있으나, 박막을 형성하는 과정에서 큰 에너지 및 이온크기의 빔 사이즈 등으로 인한 표면으로의 damages가 일어날 수 있어 쉽지 않는 방법이 될 수 있다. 여기에서는 이러한 damage를 획기적으로 줄이면서 저온에서 결정화 시킬 수 있는 cold annealing법을 소개하고자 한다. 이온빔에 비해서 전자빔의 에너지와 크기는 그리드 형태의 렌즈를 통해 전체면적에 조사하는 것을 쉽게 제어할 수 있으며 이러한 전자빔의 생성은 금속 필라멘트의 열전자가 아닌 Ar플라즈마에서 전자의 분리를 통해 발생된다. 유리기판위에 흡수층 제조연구를 위해 DC 및 RF 스퍼터링법을 이용한 비정질실리콘의 박막에 대하여 두께별에 따른 밴드갭, 캐리어농도 등의 변화에 대하여 조사한다. 최적의 조건에서 비정질 실리콘을 2um이하로 증착을 한 후, 전자빔 조사를 위해 1.4~3.2keV의 다양한 에너지세기 및 조사시간을 변수로 하여 실험진행을 한 후 단면의 이미지 및 결정화 정도에 대한 관찰을 위해 SEM과 TEM을 이용하고, 라만, XRD를 이용하여 결정화 정도를 조사한다. 또한 Hall효과 측정시스템을 이용하여 캐리어농도, 이동도 등을 각 변수별로 전기적 특성변화에 대하여 분석한다. 또한, 태양전지용 흡수층으로 응용을 위하여 dark전도도 및 photo전도도를 측정하여 광감도에 대한 결과가 포함된다.

  • PDF