Browse > Article
http://dx.doi.org/10.20909/kopast.2022.28.1.47

Ethylene Gas Indicator for Monitoring Climacteric Fruit Ripening  

Shin, Dong Un (Department of Food Science and Biotechnology, Dongguk University-Seoul)
Lee, Seung Ju (Department of Food Science and Biotechnology, Dongguk University-Seoul)
Publication Information
KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY / v.28, no.1, 2022 , pp. 47-53 More about this Journal
Abstract
Recently, intelligent packaging of foods has been increasingly developed in response to the growing interest of consumers in checking food quality. Indicators, an important element in intelligent packaging, change color to detect specific substances or indicate food quality changes. Gas indicators can be built into food packaging to detect volatile substances that are released when food quality changes. Ethylene gas is produced as climacteric fruits ripen. Climacteric fruit ripening results from a rapid increase in ethylene production and respiration. In the case of packaged fruits, the ethylene gas concentration in the headspace is closely related to the ripeness of each fruit variety. If an ethylene gas indicator that can be used in fruit packaging is available, the consumer will be able to eat the fruit at the optimal time. In this paper, the characteristics and pros and cons of the ethylene gas indicators developed so far were analyzed by reviewing various types of indicators such as metal reduction-based indicator, fluorescence-based indicator, pH indicator-based indicator, and liposome-based indicator.
Keywords
Indicator; Ethylene gas; Intelligent packaging; Fruit ripening;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li, Z. and Suslick, K. S. 2019. Colorimetric sensor array for monitoring CO and Ethylene. Anal. Chem. 91: 797-802.   DOI
2 Oh, T. G., Jo, J.A. and Lee, S. J. 2021. Evaluation of time-temperature integrator for indicating the ripeness of kiwifruit in plastic container at home. J. Food Sci. 2872-2885.
3 Vanderroost, M., Ragaert, P., Devlieghere, F. and Meulenaer, B. D. 2014. Intelligent foodpackaging: The nextgeneration. Trends Food Sci. Technol. 39: 47-62.   DOI
4 Kuswandi, B. and Murdyaningsih, E. A. 2017. Simple on package indicator label for monitoring of grape ripening process using colorimetric pH sensor. J. Food Meas. Charact. 11: 2180-2194.   DOI
5 Verghese, K., Lewis, H., Lockrey, S. and Williams, H. 2015. Packaging's role in minimizing food loss and waste across the supply chain. Packag. Technol. Sci. 28(7): 603-620.   DOI
6 Janssen, S., Tessmann, T. and Lang, W. 2014. High sensitive and selective ethylene measurement by using a large-capacity-on-chip preconcentrator device. Sensor Actuat. BChem 197: 405-413.   DOI
7 Dieckmann, M., and Buchholz, R. 1999. Apparatus for measuring the partial pressure of gases dissolved in liquids. US Patent 6003362.
8 Kuswandi, B., Maryska, C., Jayus, Abdullah, A. and Heng, L.Y. 2013. Real time on-package freshness indicator for guavas packaging. J. Food Meas. Charact. 7: 29-39.   DOI
9 Ulrich, S., Moura, S. O., Diaz, Y., Cler, M., Guex, A. G., de Alaniz, J. R., Martins, A., Neves, N. M., Rottmar, M., Rossi, R. M., Fortunato, G. and Boesel, L. F. 2020. Electrospun colourimetric sensors for detecting volatile amines. Sensor Actuat. B-Chem. 322: 128570.   DOI
10 Warsiki, E. and Titi, C. S. J. S. 2011. Physical-mechanical properties and permeability evaluation of chitosan film. J. Agroindustrial Tech. 21(3): 139-145.
11 Varlan, A. R., and Sansen, W. 1997. Micromachined conductometric p(CO2) sensor. Sensor Actuat. B-Chem. 44: 309e315.   DOI
12 Alders, A. W. C. 1987. Marine refrigeration manual. Rotterdam Marine Chartering, Rotterdam, Nederland.
13 Mattila-Sandholm, T., Ahvenainen, R., Hurme, E. and Jarvi-Kaarianen, T. I. 1998. Oxygen sensitive colour indicator for detecting leaks in gas protected food packages. European Patent EP 0666977.
14 Bohmer-Maas, B.W., Fonseca, L.M., Otero, D.M., da Rosa Zavareze, E. and Zambiazi, R.C. 2020. Photocatalytic zeinTiO2 nanofibers as ethylene absorbers for storage of cherry tomatoes. Food Packaging and Shelf Life 24: 100508.   DOI
15 Chen, X., Pradhan, T., Wang, F., Kim, J. S. and Yoon, J. 2011. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chem. Rev. 112(3): 1910-1956.   DOI
16 Lee, K. and Ko, S. 2014. Proof-of-concept study of a whey protein isolate based carbon dioxide indicator to measure the shelf-life of packaged foods. Food Sci. Biotechnol. 23(1): 115-120.   DOI
17 Wang, L. P., Jin, Z., Luo, T., Ding, Y., Liu, J.-H., Wang, X. and Li, M.-Q. 2019. The detection of ethylene using porous ZnO nanosheets: Utility in determination of Fruit Ripeness. New J. Chem. 43: 3619-3624.   DOI
18 Ghosh, A., Ali, A. and Ranford, S. 2011. Analysis of the interference of moisture on ethylene hormone detection with a palladium complex. 2011 Fifth International Conference on Sensing Technology, New Zealand, Palmerston North, pp. 679-684.
19 Kim, J. H. and Shiratori, S. 2006. Fabrication of Color Changeable Film to Detect Ethylene Gas. Japanese J. Appl. Phys. 45(5): 4274-4278.   DOI
20 Lang, C. and Hubert, T. 2011. A Colour Ripeness Indicator for Apples. Food Bioproc. Tech. 5(8): 3244-3249.   DOI
21 Hu, X. G., Li, X. L., Park, S. H., Kim, Y. H. and Yang, S. I. 2016. Nondestructive Monitoring of Kiwi Ripening Process Using Colorimetric Ethylene Sensor. Bull. Korean Chem. Soc. 37: 759-762.   DOI
22 Esser, B. and Swager, T. M. 2010. Detection of Ethylene Gas by Flourescence Turn-On of a Conjugated Polymer. Angew. Chem. Int. Ed. 49: 8872-8875.   DOI
23 Nguyen, L. H., Oveissi, F., Chandrawati, R., Dehghani, F. and Naficy, S. 2020. Naked-Eye Detection of Ethylene Using Thiol Functionalized Polydiacetylene-Based Flexible Sensors. ACS Sens.
24 Hogan, S.A. and Kerry, J.P. 2008. Smart packaging of meat and poultry products. In: Smart packaging technologies for fast moving consumer goods. (eds.), John Wiley & Sons, New York, USA, pp. 33-59.
25 Iskandar, A., Yuliasih, I. and Warsiki, E. 2020. Performance Improvement of Fruit Ripeness Smart Label Based On Ammonium Molibdat Color Indicators. Indonesian Food Sci. Technol. J. 3(2): 48-57.   DOI
26 Woltering, E.J., Harren, F. and Boerrigter, H.A.M. 1988. Use of a laser-driven photoacoustic detection system for measurement of ethylene production in cymbidium flowers. Plant Physiol. 88(2): 506-510.   DOI
27 Pham-Tuan, H., Vercammen, J., Devos, C. and Sandra, P. 2000. Automated capillary gas chromatographic system to monitor ethylene emitted from biological materials. J. Chromatogr. A. 868(2): 249-259.   DOI
28 Warsiki, E., Iskandar, A. and Ghiyas, H. M. 2020. Theoretical calculation and experimental validation of ammonium molybdate concentration for fruit ripeness indicator label. IOP C. Ser. Earth Env. 472: 012017.   DOI