DOI QR코드

DOI QR Code

Ethylene Gas Indicator for Monitoring Climacteric Fruit Ripening

과일 숙성 에틸렌가스 지시계 기술개발 현황

  • Shin, Dong Un (Department of Food Science and Biotechnology, Dongguk University-Seoul) ;
  • Lee, Seung Ju (Department of Food Science and Biotechnology, Dongguk University-Seoul)
  • 신동운 (동국대학교 식품생명공학과) ;
  • 이승주 (동국대학교 식품생명공학과)
  • Received : 2021.12.06
  • Accepted : 2022.04.11
  • Published : 2022.04.30

Abstract

Recently, intelligent packaging of foods has been increasingly developed in response to the growing interest of consumers in checking food quality. Indicators, an important element in intelligent packaging, change color to detect specific substances or indicate food quality changes. Gas indicators can be built into food packaging to detect volatile substances that are released when food quality changes. Ethylene gas is produced as climacteric fruits ripen. Climacteric fruit ripening results from a rapid increase in ethylene production and respiration. In the case of packaged fruits, the ethylene gas concentration in the headspace is closely related to the ripeness of each fruit variety. If an ethylene gas indicator that can be used in fruit packaging is available, the consumer will be able to eat the fruit at the optimal time. In this paper, the characteristics and pros and cons of the ethylene gas indicators developed so far were analyzed by reviewing various types of indicators such as metal reduction-based indicator, fluorescence-based indicator, pH indicator-based indicator, and liposome-based indicator.

최근 식품의 품질을 확인하는 소비자의 관심이 높아짐에 따라 지능형 식품포장 기술이 점차 발전하고 있다. 지능형 포장의 중요한 요소인 indicator는 특정 물질을 감지하거나 식품 품질 변화를 나타내기 위한 색변화를 나타낸다. Gas indicator는 식품 품질이 변할 때 방출되는 휘발성 물질을 감지하기 위해 식품 포장에 내장될 수 있다. 에틸렌 가스는 후숙과일의 호흡을 증가 시키며 후숙과일이 숙성이 진행됨에 따라서 에틸렌가스가 다시 생성된다. 포장된 과일의 경우 headspace의 에틸렌가스 농도는 과일의 숙성도와 밀접한 관련이 있다. 이와 관련하여 에틸렌 가스 흡수제를 제조하여 에틸렌가스를 제거하는 방법도 적용된다. 하지만 이는 소비자가 적숙기의 과일을 섭취하는데 도움이 되지 않는다. 과일 포장에 사용할 수 있는 에틸렌가스 지시계가 있다면 소비자는 최적의 시간에 과일을 섭취할 수 있을 것이다. 본 논문에서는 금속 물질 환원반응 활용 지시계, fluorescence 활용 지시계, pH 지시약 활용 지시계, 리포솜 활용 지시계 등의 다양한 에틸렌가스 지시계를 비교하여 지금까지 개발된 에틸렌가스 지시계의 특성과 장단점을 분석하였다. 각 지표를 분석한 결과, 금속 물질 환원반응 기반 지표인 몰리브덴(Mo)에 팔라듐(Pd)을 촉매화하여 물리적 장벽의 수단인 SiO2와 30PDDA(polydiallyl dimethyl ammonium chloride)의 다중층에 적용한 지시계가 안정성, 에틸렌가스에 대한 민감도, 시각적 변화를 통한 정보 제공력에서 가장 적합한 지시계로 가능성이 높을 것으로 사료된다.

Keywords

Acknowledgement

이 논문은 2022년 농림축산식품부의 재원으로 농림식품기술기획평가원의 수출전략기술개발사업(618001-5)과 해양수산부 재원으로 한국해양과학기술진흥원(수산물 유통 현안 해결 기술 개발/1525011963)의 지원을 받아 수행된 연구임.

References

  1. Vanderroost, M., Ragaert, P., Devlieghere, F. and Meulenaer, B. D. 2014. Intelligent foodpackaging: The nextgeneration. Trends Food Sci. Technol. 39: 47-62. https://doi.org/10.1016/j.tifs.2014.06.009
  2. Chen, X., Pradhan, T., Wang, F., Kim, J. S. and Yoon, J. 2011. Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives. Chem. Rev. 112(3): 1910-1956. https://doi.org/10.1021/cr200201z
  3. Lee, K. and Ko, S. 2014. Proof-of-concept study of a whey protein isolate based carbon dioxide indicator to measure the shelf-life of packaged foods. Food Sci. Biotechnol. 23(1): 115-120. https://doi.org/10.1007/s10068-014-0015-6
  4. Mattila-Sandholm, T., Ahvenainen, R., Hurme, E. and Jarvi-Kaarianen, T. I. 1998. Oxygen sensitive colour indicator for detecting leaks in gas protected food packages. European Patent EP 0666977.
  5. Hogan, S.A. and Kerry, J.P. 2008. Smart packaging of meat and poultry products. In: Smart packaging technologies for fast moving consumer goods. (eds.), John Wiley & Sons, New York, USA, pp. 33-59.
  6. Oh, T. G., Jo, J.A. and Lee, S. J. 2021. Evaluation of time-temperature integrator for indicating the ripeness of kiwifruit in plastic container at home. J. Food Sci. 2872-2885.
  7. Kuswandi, B., Maryska, C., Jayus, Abdullah, A. and Heng, L.Y. 2013. Real time on-package freshness indicator for guavas packaging. J. Food Meas. Charact. 7: 29-39. https://doi.org/10.1007/s11694-013-9136-5
  8. Kuswandi, B. and Murdyaningsih, E. A. 2017. Simple on package indicator label for monitoring of grape ripening process using colorimetric pH sensor. J. Food Meas. Charact. 11: 2180-2194. https://doi.org/10.1007/s11694-017-9603-5
  9. Verghese, K., Lewis, H., Lockrey, S. and Williams, H. 2015. Packaging's role in minimizing food loss and waste across the supply chain. Packag. Technol. Sci. 28(7): 603-620. https://doi.org/10.1002/pts.2127
  10. Janssen, S., Tessmann, T. and Lang, W. 2014. High sensitive and selective ethylene measurement by using a large-capacity-on-chip preconcentrator device. Sensor Actuat. BChem 197: 405-413. https://doi.org/10.1016/j.snb.2014.02.001
  11. Wang, L. P., Jin, Z., Luo, T., Ding, Y., Liu, J.-H., Wang, X. and Li, M.-Q. 2019. The detection of ethylene using porous ZnO nanosheets: Utility in determination of Fruit Ripeness. New J. Chem. 43: 3619-3624. https://doi.org/10.1039/c9nj00031c
  12. Bohmer-Maas, B.W., Fonseca, L.M., Otero, D.M., da Rosa Zavareze, E. and Zambiazi, R.C. 2020. Photocatalytic zeinTiO2 nanofibers as ethylene absorbers for storage of cherry tomatoes. Food Packaging and Shelf Life 24: 100508. https://doi.org/10.1016/j.fpsl.2020.100508
  13. Woltering, E.J., Harren, F. and Boerrigter, H.A.M. 1988. Use of a laser-driven photoacoustic detection system for measurement of ethylene production in cymbidium flowers. Plant Physiol. 88(2): 506-510. https://doi.org/10.1104/pp.88.2.506
  14. Pham-Tuan, H., Vercammen, J., Devos, C. and Sandra, P. 2000. Automated capillary gas chromatographic system to monitor ethylene emitted from biological materials. J. Chromatogr. A. 868(2): 249-259. https://doi.org/10.1016/S0021-9673(99)01223-6
  15. Warsiki, E., Iskandar, A. and Ghiyas, H. M. 2020. Theoretical calculation and experimental validation of ammonium molybdate concentration for fruit ripeness indicator label. IOP C. Ser. Earth Env. 472: 012017. https://doi.org/10.1088/1755-1315/472/1/012017
  16. Iskandar, A., Yuliasih, I. and Warsiki, E. 2020. Performance Improvement of Fruit Ripeness Smart Label Based On Ammonium Molibdat Color Indicators. Indonesian Food Sci. Technol. J. 3(2): 48-57. https://doi.org/10.22437/ifstj.v3i2.10178
  17. Kim, J. H. and Shiratori, S. 2006. Fabrication of Color Changeable Film to Detect Ethylene Gas. Japanese J. Appl. Phys. 45(5): 4274-4278. https://doi.org/10.1143/JJAP.45.4274
  18. Lang, C. and Hubert, T. 2011. A Colour Ripeness Indicator for Apples. Food Bioproc. Tech. 5(8): 3244-3249. https://doi.org/10.1007/s11947-011-0694-4
  19. Ghosh, A., Ali, A. and Ranford, S. 2011. Analysis of the interference of moisture on ethylene hormone detection with a palladium complex. 2011 Fifth International Conference on Sensing Technology, New Zealand, Palmerston North, pp. 679-684.
  20. Hu, X. G., Li, X. L., Park, S. H., Kim, Y. H. and Yang, S. I. 2016. Nondestructive Monitoring of Kiwi Ripening Process Using Colorimetric Ethylene Sensor. Bull. Korean Chem. Soc. 37: 759-762. https://doi.org/10.1002/bkcs.10745
  21. Esser, B. and Swager, T. M. 2010. Detection of Ethylene Gas by Flourescence Turn-On of a Conjugated Polymer. Angew. Chem. Int. Ed. 49: 8872-8875. https://doi.org/10.1002/anie.201003899
  22. Li, Z. and Suslick, K. S. 2019. Colorimetric sensor array for monitoring CO and Ethylene. Anal. Chem. 91: 797-802. https://doi.org/10.1021/acs.analchem.8b04321
  23. Nguyen, L. H., Oveissi, F., Chandrawati, R., Dehghani, F. and Naficy, S. 2020. Naked-Eye Detection of Ethylene Using Thiol Functionalized Polydiacetylene-Based Flexible Sensors. ACS Sens.
  24. Ulrich, S., Moura, S. O., Diaz, Y., Cler, M., Guex, A. G., de Alaniz, J. R., Martins, A., Neves, N. M., Rottmar, M., Rossi, R. M., Fortunato, G. and Boesel, L. F. 2020. Electrospun colourimetric sensors for detecting volatile amines. Sensor Actuat. B-Chem. 322: 128570. https://doi.org/10.1016/j.snb.2020.128570
  25. Warsiki, E. and Titi, C. S. J. S. 2011. Physical-mechanical properties and permeability evaluation of chitosan film. J. Agroindustrial Tech. 21(3): 139-145.
  26. Dieckmann, M., and Buchholz, R. 1999. Apparatus for measuring the partial pressure of gases dissolved in liquids. US Patent 6003362.
  27. Varlan, A. R., and Sansen, W. 1997. Micromachined conductometric p(CO2) sensor. Sensor Actuat. B-Chem. 44: 309e315. https://doi.org/10.1016/S0925-4005(97)00223-2
  28. Alders, A. W. C. 1987. Marine refrigeration manual. Rotterdam Marine Chartering, Rotterdam, Nederland.