• Title/Summary/Keyword: 균열가지

Search Result 642, Processing Time 0.022 seconds

A Case Study for the Concrete Caisson Crack Failure Using Finite Element Analysis (유한요소 해석을 통한 케이슨 균열발생의 원인규명 사례연구)

  • 박용걸
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.119-126
    • /
    • 1994
  • One of the most serious promblems in the concrete structures is cracking failure due to the several complicated reasons. These cracks are not only serious structural problems, but also lower the durability and deteriorate the structural shape, which cause the reinforcement rust in the open air and sea water. An analytical study was undertaken to investigate the cracking problems in the one of concrete caissons using Finite Element Method. This caisson is modelled with plate elements and truss elements for the walls and lifting cables respectively and analyzed in the every construction stages, such as lifting, moving, sinking, filling, towing, setting, and proposed reasonable construction methods for the concrete caisson structures.

  • PDF

Detection of a Crack on a Plate by IDT Type Lamb Wave Sensors (IDT형 Lamb 파 센서에 의한 판상의 균열 검출)

  • Kim, Jun-Ho;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.483-490
    • /
    • 2010
  • In this paper, an Inter-Digital Transducer (IDT) type Lamb wave sensor is proposed to estimate the geometry and number of cracks on a plate structure, and its validity is checked through experiments. This IDT type sensor is more readily controllable than conventional patch type piezoelectric sensors to modify its operation frequency and directionality by altering its finger patterns. In this work, omni-directional annular IDT and highly directional rectangular IDT sensors are designed and fabricated. The IDT sensors are used to diagnose the length, number and orientation of cracks on an aluminum plate by measuring the amplitude and time of flight of Lamb waves. The results are analyzed to discuss the efficacy of the IDT sensors.

The Fatigue Crack Growth Behavior of Concrete (콘크리트의 피로균열 성장거동에 관한 연구)

  • 김진근;김윤용
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.127-135
    • /
    • 1997
  • In this study, the wedge splitting tcst (WST) was carried out for the fatigue wack growth behavior of concrete. Selected test variables were concrete compressive strength of 28, 60 and 118 MI%, and stress ratio with 2 levels (6. 13%). In oder to make the designed stress ratio, the maximum and thr minimum fatigue loading level were 75-85% and 5- 10% of ultimate static load, respectively. Fatigue testing was preceded by crack mout.h opening displacement (CMOI)) compliance calibration tcst, and then the fatigue crack growth was computed by crack lcngth vs. (lMOI) compliance relations acquisited by the CMOD compliance calibration technique. To evaluate thc validity of CMOD compliancc calibration techniquc, the crack length p~mlicted by this method was cornpard with the crack length by linear elastic fracture mechanics(LEFIbl) and dyeing test. On the basis of the experimental results, a LRFhl-based c.mpirica1 model for f'at,igue crack growth rate(da/dN-AKI relationships) was presented. The fat,igut. crack growth ratc increased with the strength of concwtc. It appcars that t.he da/tiN-AKI relationships was influenced by stress ratio, however, the effect is diminished with an increase of strength. The comparisons between CblOl) compliance calibration technique anti the other. methods gave the validity of' ('MOD compliance calibration technique for the LZXT.

Effects of Failure Mode II on Crack Initiation and Crack propagation Steps Using Multilevel Fatigue Loading Test (다단계 피로하중 실험을 통한 균열 발생 및 전파단계에서 파괴모드 II 영향 분석)

  • Hong, Seok Pyo;Park, Sae Min;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.853-860
    • /
    • 2017
  • To evaluate the effects of mode II on the crack initiation and propagation stages, the effects in the fatigue threshold region under a mixed-mode I+II loading state was experimentally investigated. In the case of mixed-mode I + II, during the crack initiation stage, as the loading application angle (${\theta}$) increased, cracks occurred in the lower load owing to the effects of mode II, while the crack propagation rate decreased. The effects of mode II were experimentally investigated in the crack propagation stage by means of multilevel loading direction variation. Following mixed-mode I+II ($0^{\circ}{\rightarrow}{\theta}{\rightarrow}60^{\circ}$), as the load application angle increased, the fatigue crack propagation rate decreased, as did the fatigue crack propagation rate, which occurred later. Following mixed-mode I + II in case of(${\theta}{\geq}75^{\circ}$), the fatigue crack propagation rate was found to increase, while the fatigue life decreased.

Indirect Crack Controling Method Affected by Variation of Material Characteristics in Reinforced Concrete Flexural Members (재료 특성 변화에 따른 철근콘크리트 휨부재의 간접균열제어 방법 연구)

  • Choi, Seung-Won;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.87-98
    • /
    • 2011
  • Crack formations are inevitable in reinforced concrete structures. To estimate crack widths, empirical formulae are used widely and indirect crack controling methods of limiting bar spacing and bar diameter are also used due to their simplicity. In EC2, the characteristic crack width is calculated by multiplying maximum crack spacing and average strain. In this study, limit values of maximum bar spacing and bar diameter are examined as the material characteristics are varied. Two models of tension stiffening effect and maximum crack spacing and their effects are evaluated. The obtained results are compared with the values obtained using KCI method. The results showed that a significant difference is found when two tension stiffening effect are employed, and an under-estimation is found when 2nd order tension stiffening effect and maximum crack spacing limit from Part II were implemented. Therefore, a rational indirect crack control method attained using the tension stiffening effect of 2nd order form is needed. Also, a consistency in serviceabiliy analysis in flexural members needs to be secured. In order to achieve these goals, two crack controling models are suggested.

Damage Analysis of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions by Using Acoustic Emission (음향 방출법을 이용한 집중하중을 받는 일방향 섬유 금속 적층판의 손상 해석)

  • 남현욱;김용환;한경섭
    • Composites Research
    • /
    • v.14 no.5
    • /
    • pp.46-53
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subjected to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, acoustic emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. The damage process of SOP FML was divided by three parts, i.e., crack initiation, crack propagation, and penetration. The AE characteristics during crack initiation show that the micro crack is initiated at lower ply of the plate, then propagate along the thickness of the plate with creating tiber debonding. The crack grow along the fiber direction with occurring 60∼80dB AE signal. During the penetration, the fiber breakage was observed. As fiber orientation increases, talc fiber breakage occurs more frequently. The AE signal behaviors support these results. Cumulative AE counts could well predict crack initiation and crack propagation and AE amplitude were useful for the prediction of damage failure mode.

  • PDF

Friction Stir Welding of 7075-T651 Aluminum Plates and Its Fatigue Crack Growth Property (7075-T651 알루미늄 판재의 마찰교반용접과 피로균열전파 특성)

  • Kim, Chi-Ok;Sohn, Hye-Jeong;Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1347-1353
    • /
    • 2011
  • Friction stir welding (FSW) method has extensively been used in manufacturing methods because of the several advantages over conventional welding methods, such as better mechanical properties, reduced occurrence of joining defects, high material saving, and low production time, etc. The aim of this paper is to review the optimal FSW conditions using the previous experimental results and is to investigate the fatigue crack growth rate in three different zones, WM, HAZ and BM for FSWed Al7075-T651 aluminum plates. As far as our experiments are concerned, the optimal conditions are obtained as rotation speed, 800rpm and travelling speed, 0.5mm/sec. The fatigue crack growth rate showed strong dependency on three different zones WM, HAZ and BM, and crack driving force.

Estimation of Empirical Fatigue Crack Propagation Model of AZ31 Magnesium Alloys under Different Maximum Loads (최대하중 조건에 따른 AZ31 마그네슘합금의 실험적 피로균열전파모델 평가)

  • Choi, Seon-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.522-528
    • /
    • 2012
  • It is the aim of this paper to propose the empirical fatigue crack propagation model fit to describe a crack growth behavior of AZ31 magnesium alloys. The statistical data of a crack growth for an estimation are obtained by fatigue crack propagation tests under the three cases of maximum load. The empirical models estimated are Paris-Erdogan model, Walker model, Forman model, and modified-Forman model. It is found that the empirical model fit to describe a crack growth behavior of AZ31 magnesium alloys is Paris-Erdogan model and Walker model. It is also verified that a fatigue crack growth rate exponent of a empirical model is to be a material constant.

Crack Susceptibility Reduction and Weld Strength Improvement for Al Alloy 5J32-T4 by using Laser Weaving Method (레이저 위빙을 적용한 알루미늄 합금 5J32-T4의 용접균열 저감 및 용접강도 향상에 관한 연구)

  • Choi, Kwang-Deok;Ahn, Young-Nam;Kim, Cheol-Hee
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.112-112
    • /
    • 2009
  • 레이저 용접은 아크 용접에 비해 상대적으로 빠른 용접과 깊은 용입이 가능하며, 낮은 열입력을 가지는 장점이 있다. 하지만 알루미늄 합금 용접 시 균열 감수성의 증가 및 용접강도가 저하되는 단점을 가지고 있다. 이러한 단점을 극복하는 방법으로 모재의 화학조성을 제어하는 방법과 부가적인 용접와이어를 공급하는 방법이 제안되었으나 레이저 용접에 적용하기 쉽지 않다. 아크 용접과 전자빔 용접에서는 열원에 오실레이션을 적용하여 결정립 구조를 제어하여 용접강도를 증가하는 방법이 제안되었다. 따라서 본 연구에서는 알루미늄 합금 5J32-T4의 용접균열 저감 및 용접강도 향상을 위해 레이저 위빙을 적용하였다. 1mm 두께의 알루미늄 5J32-T4를 사용하였으며, 4kW급 디스크 레이저와 레이저용 스케너를 이용하여 레이저 위빙을 구현하였다. 고온균열을 평가하기 위해 자기구속형 균열 평가방법을 사용하였으며, 용접강도를 평가하기 위해 겹치기 용접을 수행한 시편을 이용하였다. 고온균열 실험결과 레이저 위빙 적용 시 직선 용접에 비해 균열 감수성이 감소한 것을 확인하였다. 전단인장강도 측정결과 레이저 위빙의 적용에 따라 직선 용접에 비해 높은 전단인장강도의 확보가 가능하였다.

  • PDF

Simulation of Multi-Cracking in a Reinforced Concrete Beam by Extended Finite Element Method (확장유한요소법을 이용한 철근 콘크리트 보의 다중균열 해석)

  • Yoo, Hyun-Suk;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2016
  • Recently, extensive research on crack analysis using extended finite element method(XFEM) which has main advantages in element re-meshing and visualization of cracks has been conducted. However, its application was restricted to the members of a single material. In this study, the applicability and feasibility of the XFEM to the multiple crack analysis of reinforced concrete beams were demonstrated. ABAQUS which has implemented XFEM was used for the crack analysis and its results were compared with test results. Enriched degree-of-freedom locking phenomenon was discovered and its causes and the ways to prevent it were suggested. The locking occurs when cracks in the adjacent elements simultaneously develop. A modelling technique for multiple cracking similar to test results was also proposed. The analysis with XFEM showed similar results to the tests in terms of crack patterns, spacing of cracks, and load-deflection relationship.