DOI QR코드

DOI QR Code

Estimation of Empirical Fatigue Crack Propagation Model of AZ31 Magnesium Alloys under Different Maximum Loads

최대하중 조건에 따른 AZ31 마그네슘합금의 실험적 피로균열전파모델 평가

  • Choi, Seon-Soon (Department of Car Mechatronics Engineering, SAHMYOOK University)
  • 최선순 (삼육대학교 카메카트로닉스학과)
  • Received : 2012.01.13
  • Accepted : 2012.02.10
  • Published : 2012.02.29

Abstract

It is the aim of this paper to propose the empirical fatigue crack propagation model fit to describe a crack growth behavior of AZ31 magnesium alloys. The statistical data of a crack growth for an estimation are obtained by fatigue crack propagation tests under the three cases of maximum load. The empirical models estimated are Paris-Erdogan model, Walker model, Forman model, and modified-Forman model. It is found that the empirical model fit to describe a crack growth behavior of AZ31 magnesium alloys is Paris-Erdogan model and Walker model. It is also verified that a fatigue crack growth rate exponent of a empirical model is to be a material constant.

본 논문의 목적은 AZ31 마그네슘합금의 균열성장거동의 경향을 묘사할 수 있는 실험적 피로균열전파모델을 평가하여 적합한 모델을 제시하는 것이다. 3가지 최대하중 조건을 변화시키면서 피로균열전파실험을 수행하여 평가에 필요한 통계적 균열성장 데이터를 획득하였다. 평가에 사용된 실험적 모델은 Paris-Erdogan 모델, Walker 모델, Forman 모델, 수정된 Forman 모델이며, 각 모델의 파라미터를 통계적으로 추정하기 위하여 최우추정법을 사용하였다. 마그네슘합금의 균열성장거동의 경향을 잘 묘사하는 모델은 Paris-Erdogan 모델과 Walker 모델이며, 모델의 파라미터 중 피로균열성장속도지수는 재료상수가 될 수 있음을 밝혀내었다.

Keywords

References

  1. Tokaji, K., Kamakura, M., Ishiizumi, Y., and Hasegawa, N., "Fatigue Behaviour and Fracture Mechanism of a Rolled AZ31 Magnesium Alloy," International Journal of Fatigue, Vol. 26, pp. 1217-1224, 2004. https://doi.org/10.1016/j.ijfatigue.2004.03.015
  2. Mordike, B. L. and Ebert, T., "Magnesium Propertiesapplication- potential," Materials Science & Engineering (A), Vol. 302, pp. 37-45, 2001. https://doi.org/10.1016/S0921-5093(00)01351-4
  3. Tokaji, K., Nakajima, M., and Uematsu, Y., "Fatigue Crack Propagation and Fracture Mechanisms of Wrought Magnesium Alloys in Different Enviro-nments," International Journal of Fatigue, Vol. 31, Issue 7, pp. 1137-1143, 2009. https://doi.org/10.1016/j.ijfatigue.2008.12.012
  4. Seon Soon CHOI, "Estimation of Empirical Fatigue Crack Propagation Model of Magnesium Alloy under Different Maximum Loads," Proceedings of the KSMTE Autumn Conference 2010, pp. 383-385, October, 2010.
  5. Seon Soon CHOI, "Probabilistic Characteristics of Fatigue Behavior Parameter of Paris-Erdogan Law in Mg-Al-Zn Alloy," Transactions of the KSME(A), Vol. 35, No. 4, pp. 375-381, April, 2011. https://doi.org/10.3795/KSME-A.2011.35.4.375
  6. Seon Soon CHOI, "Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy," Journal of the KAIS, Vol. 12, No. 2, pp. 594-599, February, 2011. https://doi.org/10.5762/KAIS.2011.12.2.594
  7. Seon Soon CHOI, "Prediction of Fatigue Design Life in Magnesium Alloy by Failure Probability," Journal of the KSMTE, Vol. 19, No. 6, pp. 804-811, December, 2010.
  8. Seon Soon CHOI, "Effect of Specimen Thickness on Probability Distribution of Fatigue Crack Propagation Behavior in Magnesium Alloy AZ31," Journal of the KSMTE, Vol. 18, No. 4, pp. 395-400, August, 2009.
  9. Seon Soon CHOI, "Estimation of Probability Distribution Fit for Fatigue Crack Propagation Life of AZ31 Magnesium Alloy," Transactions of the KSME(A), Vol. 33, No. 8, pp. 707-719, August, 2009. https://doi.org/10.3795/KSME-A.2009.33.8.707
  10. Seon Soon CHOI, Ouk Sub LEE, "Effect of Mean Stress on Probability Distribution of Random Grown Crack Size in Magnesium Alloy AZ31," Journal of the KSMTE, Vol. 18, No. 5, pp. 536-543, October, 2009.
  11. ASTM E647-00, "Standard Test Method of Fatigue Crack Growth Rates," ASTM International, 2000.

Cited by

  1. Estimation of Empirical Fatigue Crack Propagation Model of AZ31 Magnesium Alloys under Different Specimen Thickness Conditions vol.15, pp.2, 2014, https://doi.org/10.5762/KAIS.2014.15.2.646