DOI QR코드

DOI QR Code

Effects of Failure Mode II on Crack Initiation and Crack propagation Steps Using Multilevel Fatigue Loading Test

다단계 피로하중 실험을 통한 균열 발생 및 전파단계에서 파괴모드 II 영향 분석

  • 홍석표 (LG H&A사업본부 에어솔루션 연구소) ;
  • 박세민 (LG H&A사업본부 에어솔루션 연구소) ;
  • 김주희 (육군사관학교)
  • Received : 2017.02.25
  • Accepted : 2017.06.07
  • Published : 2017.09.01

Abstract

To evaluate the effects of mode II on the crack initiation and propagation stages, the effects in the fatigue threshold region under a mixed-mode I+II loading state was experimentally investigated. In the case of mixed-mode I + II, during the crack initiation stage, as the loading application angle (${\theta}$) increased, cracks occurred in the lower load owing to the effects of mode II, while the crack propagation rate decreased. The effects of mode II were experimentally investigated in the crack propagation stage by means of multilevel loading direction variation. Following mixed-mode I+II ($0^{\circ}{\rightarrow}{\theta}{\rightarrow}60^{\circ}$), as the load application angle increased, the fatigue crack propagation rate decreased, as did the fatigue crack propagation rate, which occurred later. Following mixed-mode I + II in case of(${\theta}{\geq}75^{\circ}$), the fatigue crack propagation rate was found to increase, while the fatigue life decreased.

본 연구는 균열 발생 및 전파단계에서 하중모드 II의 영향을 평가하기 위해 피로균열 하한계 영역의 혼합모드 I+II 하중을 통해 실험적으로 평가하였다. 균열 발생단계(Stage I)에서는 혼합모드상태에서 하중작용 각도(${\theta}$)가 증가할수록 모드 II 영향으로 인하여 낮은 하중에서 균열이 발생하고, 균열 전파단계 (Stage II)에서는 균열전파 속도는 감소하였다. 다단계 하중작용 각도변화에 따른 하중모드 II영향은 균열전파단계 실험을 통해 평가하였다. 혼합모드 I+II 하중 작용 시 작용각도 ($0^{\circ}{\rightarrow}{\theta}{\rightarrow}60^{\circ}$) 증가에 따라 피로균열전파속도는 감소하였으며 늦게 발생한 균열에서도 마찬가지로 감소하였다. 작용각도가 ${\theta}{\geq}75^{\circ}$ 범위에서는 하중작용각도 증가에 따라 피로균열전파속도가 증가하고 피로수명이 감소하는 것을 확인하였다.

Keywords

References

  1. Qian, J. and Fatemi, A., 1996, "Mixed Mode Fatigue Crack Growth: A Literature Survey," Engineering Fracture Mechanics, Vol. 55, No. 6, pp. 969-990. https://doi.org/10.1016/S0013-7944(96)00071-9
  2. Richard, H. A. and Benitz, K., 1983, "A Loading Device for the Criterion of Mixed Mode in Fracture Mechanics," International Journal of Fracture, Vol. 22, pp. R55-R58. https://doi.org/10.1007/BF00942726
  3. Hong, K. J. and Kang, K. J., 1996, "Method to Measure KI, KII and J-Integral for CTS Specimen under Mixed Mode Loading," Trans. Korean Soc. Mech. Eng. A, Vol. 20, No. 11, pp. 3498-3560. https://doi.org/10.22634/KSME-A.1996.20.11.3498
  4. Gao, H. and Brown, M. W. and Miller, K. J., 1982, "Mixed-mode Fatigue Threshold," Fatigue of Engineering Materials and Structures, Vol. 5, No. 1, pp. 1-77. https://doi.org/10.1111/j.1460-2695.1982.tb01220.x
  5. Tanaka, K., 1974, "Fatigue Crack Propagation form a Crack Inclined to the Cyclic Tensile Axis," Engineering Fracture Mechanics, Vol. 6, pp. 493-507. https://doi.org/10.1016/0013-7944(74)90007-1
  6. Barsom, J. C., 1974, "Fatigue Behavior of Pressure-Vessel Steels," WRC Bulletin, No. 194, Welding Research Council, New York.
  7. Dahlin, P. and Olsson, M., 2004, "Reduction of Mode I Fatigue Crack Growth Rate due to Occasional Mode II Loading," International Journal of Fatigue, Vol. 26, pp. 1083-1093. https://doi.org/10.1016/j.ijfatigue.2004.03.003