• Title/Summary/Keyword: 굽힘 강성

Search Result 222, Processing Time 0.027 seconds

Parametric Study on Design of Composite-Foam Sandwich Structures for Micro EDM Machine tool structures (미세 방전가공 기계 구조를 위한 복합재료-포움 샌드위치 구조 설계에 관한 파라메트릭 연구)

  • Kim Dae-Il;Chang Seung-Hwan
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, parametric study was carried out to design sandwich structures for EDM machines controlling stacking sequence, stacking thickness of composites and rib configuration. Sandwich structures which are dealt with in this paper are composed of fibre reinforced composite for skin material and foam or resin concrete for core materials. The sandwich column has cruciform rib to enhance bending stiffness of the structure and the bed has several vertical ribs to resist the normal forces and vibration. The design parameters such as rib thickness and stacking sequence were controlled to enhance the system robustness. Finite element analysis was also carried out to verify the variation of static and dynamic stiffness of the structures according to the variation of the parameters. Vibration tests were performed to verify the natural frequencies and damping ratios of the manufactured composite structures. The appropriate shape and configuration conditions for micro-EDM machine structures are proposed.

Viscoelastic Bending Behaviors of Unidirectional Fiber Reinforced Composite C-rings with Asymmetric Material Properties (비대칭물성을 고려한 일축방향 섬유강화 복합재료 C링의 점탄성적 거동해석)

  • 이명규;이창주;박종현;정관수;김준경;강태진
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.18-30
    • /
    • 2000
  • In order to optimize the design of unidirectional fiber reinforced composite C-rings, a viscoelastic load relaxation behavior was analyzed under a point load. Initially, the deflection and bending stiffness were calculated based on the elastic beam theory and the viscoelastic relaxation and creep behaviors were derived from the elastic solution using the correspondence theorem. Besides the orthotropic mechanical properties of the composite, asymmetric mechanical property due to the different tensile and compressive properties were also considered. Except the deviation affected by the relatively large thickness of the specimen compared to the radius, the calculated relaxation showed good agreement with the experimental result.

  • PDF

Evaluation of Thermal Degradation of CFRP Flexural Strength at Elevated Temperature (온도 상승에 따른 탄소 복합재의 굽힘 강도 저하 평가)

  • Hwang Tae-Kyung;Park Jae-Beom;Lee Sang-Yun;Kim Hyung-Geun;Park Byung-Yeol;Doh Young-Dae
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.20-29
    • /
    • 2005
  • To evaluate the flexural deformation and strength of composite motor case above the glass transition temperature$(T_g),\;170^{\circ}C$, of resin material, a finite element analysis(FEA) model in which material non-linearity and progressive failure mode were considered was proposed. The laminated flexural specimens which have the same lay-up and thickness as the composite motor case were tested by 4-point bending test to verify the validity of FEA model. Also. mechanical properties in high temperature were evaluated to obtain the input values for FEA. Because the material properties related to resin material were highly deteriorated in the temperature range beyond $T_g$, the flexural stiffness and strength of laminated flexural specimen in $200^{\circ}C$ were degraded by also $70\%\;and\;80\%$ in comparison with normal temperature results. Above $T_g$, the failure mode was changed from progressive failure mode initiated by matrix cracking at $90^{\circ}$ ply in bottom side and terminated by delamination at the center line of specimen to fiber compressive breakage mode at top side. From stress analysis, the progressive failure mechanism was well verified and the predicted bending stiffness and strength showed a good agreement with the test results.

Elastic Properties and Repeated Deformation Reliabilities of Stiffness-Gradient Stretchable Electronic Packages (강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2019
  • Stiffness-gradient stretchable electronic packages of the soft PDMS/hard PDMS/FPCB structure were processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff flexible printed circuit board (FPCB) as the island substrate. The elastic characteristics of the stretchable packages were estimated and their long-term reliabilities on stretching cycles and bending cycles were characterized. With 0.28 MPa, 1.74 MPa, and 1.85 GPa as the elastic moduli of the soft PDMS, hard PDMS, and FPCB, respectively, the effective elastic modulus of the soft PDMS/hard PDMS/FPCB package was estimated as 0.6 MPa. The resistance of the stretchable packages varied for 2.8~4.3% with stretching cycles ranging at 0~0.3 strain up to 15,000 cycles and for 0.9~1.5% with 15,000 bending cycles at a bending radius of 25 mm.

A Study on the Ultimate Strength Analysis of Damaged Tubular Members (손상원통부재(損傷圓筒部材)의 최종강도(最終强度) 해석(解析)에 관한 연구(硏究))

  • Jeom-K.,Paik;Byung-C.,Shin
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.1
    • /
    • pp.24-34
    • /
    • 1990
  • In this paper, the formulation of a new simplified finite element is made to analyze the ultimate strength of damaged tubular members subjected to combined axial force and end moment. A damaged tubular member that has the bending deformation and the local dent is modeled by beam elements. Tangent elastic stiffness matrix of a beam element which contains the effect of the geometric nonlinearity is derived by using the updated Lagrangian approach. Here the contribution of the stiffness in the dented area is neglected since its resistance against the external loads is considered to be small. A fully plastic interaction curve of the element under combined loads taking account of the local dent effect is selected as a yielding criterion at each nodal point. Also tangent elasto-plastic stiffness matrix of the element is formulated by plastic node method. Comparison with the present solution and the existing experimental results is made showing that the present method gives quite an accurate solution.

  • PDF

Flexural Vibration of a Bar with Periodically Nonuniform Material Properties (재질이 주기적으로 불균일한 보의 굽힘 진동 해석)

  • 김진오;문병환;김준태
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.73-78
    • /
    • 1999
  • The paper describes a theoretical study on the flexural vibration of an elastic flat bar with periodically nonuniform material properties. The approximate solution of the natura1 frequency and mode shape has been obtained using the perturbation technique for sinusoidal modulation of the flexural rigidify and mass density. The numerical solution obtained by using the finite element method verifies the trend of the approximate solution. It appears that distributed vibrations exist in the low modes, and this approach can be extended to the vibration analysis of the p1ate in the flat panel speaker.

  • PDF

Analysis of Contact Stiffness and Bending Stiffness according to Contact Angle of Curvic Coupling (곡률 커플링 접촉각에 따른 접촉 강성 및 굽힘 강성해석)

  • Yu, Yonghun;Cho, Yongjoo;Lee, Donghyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • Coupling is a mechanical component that transmits rotational force by connecting two shafts. Curvic coupling is widely used in high-performance systems because of its excellent power transmission efficiency and easy machining. However, coupling applications change dynamic behavior by reducing the stiffness of an entire system. Contact surface stiffness is an important parameter that determines the dynamic behavior of a system. In addition, the roughness profile of a contact surface is the most important parameter for obtaining contact stiffness. In this study, we theoretically establish the process of contact and bending stiffness analysis by considering the rough surface contact at Curvic coupling. Surface roughness parameters are obtained from Nayak's random process, and the normal contact stiffness of a contact surface is calculated using the Greenwood and Williamson model in the elastic region and the Jackson and Green model in the elastic-plastic region. The shape of the Curvic coupling contact surface is obtained by modeling a machined shape through an actual machining tool. Based on this modeling, we find the maximum number of gear teeth that can be machined according to the contact angle. Curvic coupling stiffness is calculated by considering the contact angle, and the calculation process is divided into stick and slip conditions. Based on this process, we investigate the stiffness characteristics according to the contact angle.

Investigation into Characteristics of Bending Stiffness and Failure for ISB Panel (ISB 판넬의 굽힘강성 및 파손특성에 관한 연구)

  • Ahn Dong-Gyu;Lee Sang-Hoon;Kim Min-Su;Han Gil-Young;Jung Chang-Gyun;Yang Bong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.162-172
    • /
    • 2005
  • The objective of this research works is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a crimped pyramid shape and woven metal are employed as an internally structured material. Through three-points bending test, the force-displacement curve and failure shape are obtained to examine the deformation pattern, characteristic data, such as maximum load, displacement at maximum load, etc, and failure pattern of the ISB panel. In addition, the influence of design parameters fur ISB panel on the specific stiffness, the specific stiffness per unit width, failure mode and failure map has been found. Finally, it has been shown that ISB containing expand metal with the crimped pyramidal shape is prefer to that containing woven metal from the view point of optimal design for ISB panel.

Impact Energy Absorbing Capability of Metal/Polymer Hybrid Sheets (금속/폴리머 접합강의 충격 특성에 대한 실험적 연구)

  • Kong, Kyungil;Kwon, O Bum;Park, Hyung Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.137-142
    • /
    • 2017
  • Recently, the reduction of vehicle weight has been increasingly studied, in order to enhance the fuel efficiency of passenger cars. In particular, the seat frame is being studied actively, owing to considerations of driver safety from external impact damage. Therefore, this study focuses on high strength steel sheet (SPFC980)/polymer heterojunction hybrid materials, and their performance in regards to impact energy absorption. The ratio of impact energy absorption was observed to be relatively higher in the SPFC980/polymer hybrid materials under the impact load. This was found by calculating the equivalent flexural rigidity, which is the bending effect, according to the Castigliano theorem. An efficient wire-web structure was investigated through the simulation of different wire-web designs such as triangular, rectangular, octagonal, and hexagonal structures. The hexagonal wire-web structure was shown to have the least impact damage, according to the simulations. This study can be utilized for seat frame design for passengers' safety, owing to efficient impact absorption.