DOI QR코드

DOI QR Code

Elastic Properties and Repeated Deformation Reliabilities of Stiffness-Gradient Stretchable Electronic Packages

강성도 경사형 신축 전자패키지의 탄성특성 및 반복변형 신뢰성

  • Han, Kee Sun (Department of Materials Science and Engineering, Hongik University) ;
  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 한기선 (홍익대학교 공과대학 신소재공학과) ;
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2019.11.28
  • Accepted : 2019.12.28
  • Published : 2019.12.30

Abstract

Stiffness-gradient stretchable electronic packages of the soft PDMS/hard PDMS/FPCB structure were processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff flexible printed circuit board (FPCB) as the island substrate. The elastic characteristics of the stretchable packages were estimated and their long-term reliabilities on stretching cycles and bending cycles were characterized. With 0.28 MPa, 1.74 MPa, and 1.85 GPa as the elastic moduli of the soft PDMS, hard PDMS, and FPCB, respectively, the effective elastic modulus of the soft PDMS/hard PDMS/FPCB package was estimated as 0.6 MPa. The resistance of the stretchable packages varied for 2.8~4.3% with stretching cycles ranging at 0~0.3 strain up to 15,000 cycles and for 0.9~1.5% with 15,000 bending cycles at a bending radius of 25 mm.

Polydimethylsiloxane (PDMS)를 베이스 기판으로 사용하고 이보다 강성도가 높은 flexible printed circuit board (FPCB)를 island 기판으로 사용한 soft PDMS/hard PDMS/FPCB 구조의 강성도 경사형 신축패키지를 형성하고, 이의 탄성특성 및 인장 싸이클과 굽힘 싸이클에 따른 신뢰성을 분석하였다. Soft PDMS, hard PDMS, FPCB의 탄성계수가 각기 0.28 MPa, 1.74 MPa, 2.25 GPa일 때 soft PDMS/hard PDMS/FPCB 신축패키지의 유효 탄성계수는 0.6 MPa로 분석되었다. 0~0.3 범위의 인장 싸이클을 15,000회 인가시 신축패키지의 저항변화률은 2.8~4.3% 이었으며, 굽힘반경 25 mm의 굽힘 싸이클을 15,000회 인가시 저항변화률은 0.9~1.5% 이었다.

Keywords

References

  1. K. S. Han, "Flip Chip Process and Electrical/Mechanical Characteristics for Flexible/Stretchable Devices," in M.S. Thesis, pp.27-70, Hongik University, Seoul (2017).
  2. M. Chan, D. Esteve, J.-Y. Fourniols, C. Escriba, and E. Campo, "Smart Wearable Systems: Current Status and Future Challenges", Artif. Intell. Med., 56(3), 137 (2012). https://doi.org/10.1016/j.artmed.2012.09.003
  3. D. Park, and T. S. Oh, "Interfacial Adhesion Enhancement Process of Local Stiffness-Variant Stretchable Substrates for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 111 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.111
  4. D. Park, and T. S. Oh, "Flip Chip Process on the Local Stiffness-Variant Stretchable Substrate for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 155 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.155
  5. H. A. Oh, D. Park, S. J. Shin, and T. S. Oh, "Deformation Behavior of Locally Stiffness-Variant Stretchable Substrates Consisting of the Island Structure", J. Microelectron. Packag. Soc., 22(4), 117 (2015). https://doi.org/10.6117/kmeps.2015.22.4.117
  6. H. A. Oh, D. Park, K. S. Hahn, and T. S. Oh, "Elastic Modulus of Locally Stiffness-Variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", 22(4), 91 (2015). https://doi.org/10.6117/kmeps.2015.22.4.091
  7. J. Y. Choi, D. W. Park, and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014). https://doi.org/10.6117/kmeps.2014.21.4.125
  8. J. Y. Choi, and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 20(4), 17 (2013). https://doi.org/10.6117/kmeps.2013.20.4.017
  9. J. H. Ahn, H. Lee, and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.2.001
  10. J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang, and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008). https://doi.org/10.1063/1.2955829
  11. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008). https://doi.org/10.1126/science.1160309
  12. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
  13. J. H. Ahn, and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
  14. D. H. Kim, and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008) https://doi.org/10.1002/adma.200801788
  15. A. Befahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand, and S. Yunus, "Thickness and Elastic Modulus of Plasma Treated PDMS Silica-like Surface Layer", Langmuir, 26(5), 3372 (2010). https://doi.org/10.1021/la903154y
  16. I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, "Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering", J. Micromech. Microeng., 24, 035017 (2014). https://doi.org/10.1088/0960-1317/24/3/035017
  17. J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, The Mechanical Properties of the Rubber Elastic Polymer Polydimethylsilicone for Sensor Applications", J. Micromech. Microeng., 7, 145 (1997). https://doi.org/10.1088/0960-1317/7/3/017
  18. S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, "Stretchable Gold Conductors on Elastomeric Substrates", Appl. Phys. Lett., 82, 2404 (2003). https://doi.org/10.1063/1.1565683
  19. Y. K. Son, J. E. Kim, and I. Y. Cho, "Trends on Wearable Computer Technology and Market", Electronics and Telecommunications Trends, 23, 79 (2008). https://doi.org/10.22648/ETRI.2008.J.230510
  20. S. W. Jung, J. S. Choi, J. B. Koo, C. W. Park, B. S. Na, J. Y. Oh, S. S. Lee, and H. Y. Chu, "Stretchable Organic Thin-Film Transistors Fabricated on Elastomer Substrates Using Polyimide Stiff-Island Structures", ECS Solid State Lett., 4(1), P1 (2015). https://doi.org/10.1149/2.0151412jss
  21. Y. Y. Hsu, C. Papakyrikos, M. Raj, M. Dalal, P. Wei, X. Wang, G. Huppert, B. Morey, and R. Ghaffari, "Archipelago Platform for Skin-Mounted Wearable and Stretchable Electronics", Proc. 64th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, 145, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2014).
  22. R. Li, M. Li, Y. Su, Z. Song, and X. Ni, "An Analytical Mechanics Model for the island-bridge Structure of Stretchable Electronics", Soft Matter, 9, 8476 (2013). https://doi.org/10.1039/c3sm51476e
  23. Y. Y, Hsu, M. Gonzalez, F. Bossuyt, J. Vanfleteren, and I. D. Wolf, "Polyimide-Enhanced Stretchable Interconnects", IEEE Trans. Electron Devices, 58(8), 2680 (2011). https://doi.org/10.1109/TED.2011.2147789
  24. S. W. Jung, J. S. Choi, J. B. Koo, C. W. Park, B. S. Na, J. Y. Oh, S. S. Lee, and H. Y. Chu, "Stretchable Organic Thin-Film Transistors Fabricated on Elastomer Substrates Using Polyimide Stiff-Island Structures", ECS Solid State Lett., 4(1), P1 (2015). https://doi.org/10.1149/2.0151412jss
  25. D. Park, and T. S. Oh, "Comparison of Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part I. Flip-Chip Bonding on Rigid Substrates", Mater. Trans., 58(8), 1212 (2017). https://doi.org/10.2320/matertrans.M2017065
  26. D. Park, K. S. Han, and T. S. Oh, Comparison of "Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part II. Flip-Chip Bonding on Compliant Substrates", Mater. Trans., 58(8), 1217 (2017). https://doi.org/10.2320/matertrans.M2017066
  27. N. Lu, J. Yoon, and Z. Suo, "Delamination of Stiff Islands Patterned on Stretchable Substrates", Inter. J. Mater. Res., 98, 717 (2007). https://doi.org/10.3139/146.101529
  28. T. S. Oh, "Analysis on Effective Elastic Modulus and Deformation Behavior of a Stiffness-Gradient Stretchable Electronic Package with the Island-Bridge Structure", submitted to J. Microelectron. Packag. Soc. (2019).
  29. D. U. Park, and T. S. Oh, "Stretchable Deformation-Resistance Characteristics of the Stiffness-Gradient Stretchable Electronic Packages Based on PDMS", submitted to J. Microelectron. Packag. Soc. (2019).
  30. Science Today, YTN Science Inc. Oct. (2015) from https://science.ytn.co.kr/program/program_view.php?s_mcd=0082&s_hcd=&key=201510201612132845&page=1970
  31. Z. Wang, A. A. Volinsky, and N. D. Gallant, "Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measured by Custom-Built Compression Instrument", J. Appl. Polym. Sci., 131, 41050 (2014).
  32. C. R. Barrett, A. S. Tetelman, and W. D. Nix, "The Principles of Engineering Materials", pp.316-325, Prentice Hall, Inc., Englewood Cliffs (1973).
  33. S. Popovics, "Quantitative Deformation Model for Two-Phase Composites Including Concrete", Mater. Struct., 20, 171 (1987). https://doi.org/10.1007/BF02472733
  34. S. Popovics, and M. R. A. Erdey, "Estimation of the Modulus of Elasticity of Concrete-like Composite Materials", Mater. Struct., 3, 253 (1970).