• Title/Summary/Keyword: 구조 최적화

Search Result 3,820, Processing Time 0.028 seconds

A study on the 3-step classification algorithm for the diagnosis and classification of refrigeration system failures and their types (냉동시스템 고장 진단 및 고장유형 분석을 위한 3단계 분류 알고리즘에 관한 연구)

  • Lee, Kangbae;Park, Sungho;Lee, Hui-Won;Lee, Seung-Jae;Lee, Seung-hyun
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.31-37
    • /
    • 2021
  • As the size of buildings increases due to urbanization due to the development of industry, the need to purify the air and maintain a comfortable indoor environment is also increasing. With the development of monitoring technology for refrigeration systems, it has become possible to manage the amount of electricity consumed in buildings. In particular, refrigeration systems account for about 40% of power consumption in commercial buildings. Therefore, in order to develop the refrigeration system failure diagnosis algorithm in this study, the purpose of this study was to understand the structure of the refrigeration system, collect and analyze data generated during the operation of the refrigeration system, and quickly detect and classify failure situations with various types and severity . In particular, in order to improve the classification accuracy of failure types that are difficult to classify, a three-step diagnosis and classification algorithm was developed and proposed. A model based on SVM and LGBM was presented as a classification model suitable for each stage after a number of experiments and hyper-parameter optimization process. In this study, the characteristics affecting failure were preserved as much as possible, and all failure types, including refrigerant-related failures, which had been difficult in previous studies, were derived with excellent results.

Evaluation Research on the Protection and Regeneration of the Urban Historical and Cultural District of Pingjiang Road, Suzhou, China (중국 쑤저우 평강로 도시역사문화거리 보존 및 재생사업 평가연구)

  • Geng, Li;Yoon, Ji-Young
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.5
    • /
    • pp.561-580
    • /
    • 2021
  • This study analyses the historical and cultural streets at Pinggang Road in the city of Suzhou, by understanding the development and conservation of the area, and uses the following ways to investigate its development, re-organization, and current state. This paper comprehensively compares, collates and investigates 4 different historical and cultural areas in Insadong and Samcheong-dong in South Korea, and South Luogu Lane in China. From initial research and analysis, this paper gathers the cultural, economic, and societal perspectives as non-physical measures, and spatial structure, road structure, and building maintenance as physical factor framework. It is significant in that it can provide an evaluation model for the preservation and regeneration of historical and cultural streets by presenting the viewpoint of complex development of non-physical and physical elements in Pyeonggang-ro. In addition, it is necessary to conduct optimization and specific research on insufficient areas, such as maintenance and development of programs and signature systems for visitors, and continuous development of historical and cultural network platforms by combining on-site surveys. Basic data should be provided for reference on the street.

Computational Study of Energetic Salts Based on the Combination of Nitrogen-rich Heterocycles (질소가 풍부한 헤테로 고리화합물에 기초한 에너지 염의 고에너지 물질 성능에 대한 이론 연구)

  • Woo, Je-Hun;Seo, Hyun-Il;Kim, SeungJoon
    • Journal of the Korean Chemical Society
    • /
    • v.66 no.3
    • /
    • pp.185-193
    • /
    • 2022
  • The theoretical investigation has been performed to predict thermodynamic stability, density, detonation velocity, and detonation pressure of energetic salts produced by pairing of nitrogen-rich anions (tetrazine, oxadiazole etc.) and cations (NH3OH+, NH2NH3+, CH9N6+, C2H6N5+). All possible geometries and the binding energy for the trigger bond of energetic salts have been optimized at the B3LYP/cc-pVDZ level of theory. The detonation velocity and detonation pressure have been calculated using Kamlet-Jacobs equation, while enthalpy has been predicted at the G2MP2 level of theory. The predicted results reveal that the energetic salts including small sized NH3OH+(1) and NH2NH3+(2) cations increase detonation property. And also the energetic salts including more amino group (-NH2) such as CH9N6+(3) cation increase thermodynamic stability. These results provide basic information for the development the high energy density materials (HEDMs).

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (1) - System Design of a Solar Powered UAV with 4.2m Wingspan - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (1) - 주익 4.2m 태양광 무인기 시스템 설계 -)

  • Jeong, Jaebaek;Kim, Doyoung;Kim, Taerim;Moon, Seokmin;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.471-478
    • /
    • 2022
  • This paper is about research and development of Korea Aerospace University's Solar-Powered UAV System that named of KAU-SPUAV, and describes the design process of the 4.2 m solar UAV that succeeded in a long flight of 32 hours and 19 minutes at June 2020. In order to improve the long-term flight performance of the KAU-SPUAV, For reduce drag, a circular cross-section of the fuselage was designed, and manufactured light and sturdy fuselage by applying a monocoque structure using a glass fiber composite material. In addition, a solar module optimized for the wing shape of a 4.2 m solar drone was constructed and arranged, and a propulsion system applied with the 23[in] × 23[in] propeller was constructed to improve charging and flight efficiency. The developed KAU-SPUAV consumes an average of 55W when cruising and can receive up to 165W of energy during the day, and its Long-term Endurance was verified through flight tests.

Mobile Health Applications Adoption for the Management of Smartphone Overdependence (스마트폰 과의존 관리를 위한 모바일 건강관리 어플리케이션 수용 모델)

  • Rho, Mi Jung
    • Korea Journal of Hospital Management
    • /
    • v.26 no.4
    • /
    • pp.12-28
    • /
    • 2021
  • Purposes: The convenience of smartphones have lead to people's overdependence on devices, which may cause obstacles in daily life. It is useful to manage smartphone overdependence by using mobile health applications. We aimed to investigate the acceptance of mobile health applications designed to help in the management of smartphone overdependence. Methodology/Approach: We developed the extended model based on the Unified Theory of Acceptance and Use of Technology 2. The modified model had six hypotheses with six variables: result demonstrability, performance expectancy, effort expectancy, social influence, perceived risk, and behavioral intention to use. We randomly included 425 smartphone users in an online survey in 2020. A structural equation model was used to estimate the significance of the path coefficients. Findings: Performance expectancy and social influence had a very strong direct positive association with behavioral intention to use. Result demonstrability had a direct positive association with performance expectancy. Perceived risk had a strong direct negative association with performance expectancy. Performance expectancy and social influence were the main factors directly influencing the acceptance of mobile health applications for the management of smartphone overdependence. Practical Implications: We demonstrated smartphone users' acceptance of mobile health applications for smartphone overdependence management. Based on these results, we could develop mobile health applications more effectively.

A Scalable Montgomery Modular Multiplier (확장 가능형 몽고메리 모듈러 곱셈기)

  • Choi, Jun-Baek;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.625-633
    • /
    • 2021
  • This paper describes a scalable architecture for flexible hardware implementation of Montgomery modular multiplication. Our scalable modular multiplier architecture, which is based on a one-dimensional array of processing elements (PEs), performs word parallel operation and allows us to adjust computational performance and hardware complexity depending on the number of PEs used, NPE. Based on the proposed architecture, we designed a scalable Montgomery modular multiplier (sMM) core supporting eight field sizes defined in SEC2. Synthesized with 180-nm CMOS cell library, our sMM core was implemented with 38,317 gate equivalents (GEs) and 139,390 GEs for NPE=1 and NPE=8, respectively. When operating with a 100 MHz clock, it was evaluated that 256-bit modular multiplications of 0.57 million times/sec for NPE=1 and 3.5 million times/sec for NPE=8 can be computed. Our sMM core has the advantage of enabling an optimized implementation by determining the number of PEs to be used in consideration of computational performance and hardware resources required in application fields, and it can be used as an IP (intellectual property) in scalable hardware design of elliptic curve cryptography (ECC).

Comparison of Prediction Accuracy Between Classification and Convolution Algorithm in Fault Diagnosis of Rotatory Machines at Varying Speed (회전수가 변하는 기기의 고장진단에 있어서 특성 기반 분류와 합성곱 기반 알고리즘의 예측 정확도 비교)

  • Moon, Ki-Yeong;Kim, Hyung-Jin;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • This study examined the diagnostics of abnormalities and faults of equipment, whose rotational speed changes even during regular operation. The purpose of this study was to suggest a procedure that can properly apply machine learning to the time series data, comprising non-stationary characteristics as the rotational speed changes. Anomaly and fault diagnosis was performed using machine learning: k-Nearest Neighbor (k-NN), Support Vector Machine (SVM), and Random Forest. To compare the diagnostic accuracy, an autoencoder was used for anomaly detection and a convolution based Conv1D was additionally used for fault diagnosis. Feature vectors comprising statistical and frequency attributes were extracted, and normalization & dimensional reduction were applied to the extracted feature vectors. Changes in the diagnostic accuracy of machine learning according to feature selection, normalization, and dimensional reduction are explained. The hyperparameter optimization process and the layered structure are also described for each algorithm. Finally, results show that machine learning can accurately diagnose the failure of a variable-rotation machine under the appropriate feature treatment, although the convolution algorithms have been widely applied to the considered problem.

Demonstration of Magnetoelectric Coupling Measurement at Off-Resonance and Resonance Conditions in Magnetoelectric Composites (자기전기복합체의 비공진 및 공진 상태에서의 자기전기 결합 특성 평가 방법)

  • Patil, Deepak Rajaram;Ryu, Jungho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.333-341
    • /
    • 2022
  • Magnetoelectric (ME) composites are comprised of magnetostrictive and piezoelectric phases. Lots of theoretical and experimental works have been done on ME composites in the last couple of decades. The output performance of ME composites has been enhanced by optimizing the constituent phases, interface layer, dimensions of the ME composites, different operating modes, etc. However, the detailed information about the characterization of ME coupling in ME composites is not provided yet. Therefore, in this tutorial paper, we are giving an insight into the details of measurements of ME voltage coefficient of ME composites both at off-resonance and resonance conditions. A symmetric type Gelfenol/PMN-PZT/Gelfenol ME composites were fabricated by sandwiching (011) 32-mode PMN-PZT single crystal between two Galfenol plates by epoxy bonding are used for the example of ME coupling measurement. The details about the experimental setup used for the measurement of ME voltage coefficient are provided. Furthermore, a step-by-step measurement of ME voltage coefficient using computerized program is demonstrated. We believe the present experimental measurement details can help readers to understand the concept of ME coupling and its analysis.

A Study on Research Trends in the Smart Farm Field using Topic Modeling and Semantic Network Analysis (토픽모델링과 언어네트워크분석을 활용한 스마트팜 연구 동향 분석)

  • Oh, Juyeon;Lee, Joonmyeong;Hong, Euiki
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.203-215
    • /
    • 2022
  • The study is to investigate research trends and knowledge structures in the Smart Farm field. To achieve the research purpose, keywords and the relationship among keywords were analyzed targeting 104 Korean academic journals related to the Smart Farm in KCI(Korea Citation Index), and topics were analyzed using the LDA Topic Modeling technique. As a result of the analysis, the main keywords in the Korean Smart Farm-related research field were 'environment', 'system', 'use', 'technology', 'cultivation', etc. The results of Degree, Betweenness, and Eigenvector Centrality were presented. There were 7 topics, such as 'Introduction analysis of Smart Farm', 'Eco-friendly Smart Farm and economic efficiency of Smart Farm', 'Smart Farm platform design', 'Smart Farm production optimization', 'Smart Farm ecosystem', 'Smart Farm system implementation', and 'Government policy for Smart Farm' in the results of Topic Modeling. This study will be expected to serve as basic data for policy development necessary to advance Korean Smart Farm research in the future by examining research trends related to Korean Smart Farm.

Fabrication of Printed Graphene Pattern Via Exfoliation and Ink Formulation of Natural Graphite (천연흑연 박리를 통한 그래핀 잉크 생산 및 프린팅)

  • Gyuri, Kim;Yeongwon, Kwak;Ho Young, Jun;Chang-Ho, Choi
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.293-300
    • /
    • 2022
  • The remarkable mechanical, electrical, and thermal properties of graphene have recently sparked tremendous interest in various research fields. One of the most promising methods to produce large quantities of graphene dispersion is liquid-phase exfoliation (LPE) which utilizes ultrasonic waves or shear stresses to exfoliate bulk graphite into graphene flakes that are a few layers thick. Graphene dispersion produced via LPE can be transformed into graphene ink to further boost graphene's applications, but producing high-quality graphene more economically remains a challenge. To overcome this shortcoming, an advanced LPE process should be developed that uses relatively cheap natural graphite as a graphene source. In this study, a flow-LPE process was used to exfoliate natural graphite to produce graphene that was three times cheaper and seven times larger than synthetic graphite. The optimal exfoliation conditions in the flow-LPE process were determined in order to produce high-quality graphene flakes. In addition, the structural and electrical properties of the flakes were characterized. The electrical properties of the exfoliated graphene were investigated by carrying out an ink formulation process to prepare graphene ink suitable for inkjet printing, and fabricating a printed graphene pattern. By utilizing natural graphite, this study offers a potential protocol for graphene production, ink formulation, and printed graphene devices in a more industrial-comparable manner.