Browse > Article
http://dx.doi.org/10.5012/jkcs.2022.66.3.185

Computational Study of Energetic Salts Based on the Combination of Nitrogen-rich Heterocycles  

Woo, Je-Hun (Department of Chemistry, Hannam University)
Seo, Hyun-Il (Department of Chemistry, Hannam University)
Kim, SeungJoon (Department of Chemistry, Hannam University)
Publication Information
Abstract
The theoretical investigation has been performed to predict thermodynamic stability, density, detonation velocity, and detonation pressure of energetic salts produced by pairing of nitrogen-rich anions (tetrazine, oxadiazole etc.) and cations (NH3OH+, NH2NH3+, CH9N6+, C2H6N5+). All possible geometries and the binding energy for the trigger bond of energetic salts have been optimized at the B3LYP/cc-pVDZ level of theory. The detonation velocity and detonation pressure have been calculated using Kamlet-Jacobs equation, while enthalpy has been predicted at the G2MP2 level of theory. The predicted results reveal that the energetic salts including small sized NH3OH+(1) and NH2NH3+(2) cations increase detonation property. And also the energetic salts including more amino group (-NH2) such as CH9N6+(3) cation increase thermodynamic stability. These results provide basic information for the development the high energy density materials (HEDMs).
Keywords
High energy density material (HEDM); DFT; Nitrogen-rich heterocycles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. J. Haz. Mat. 2009, 161, 589.   DOI
2 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A; Gaussian, Inc., Wallingford CT, 2009.
3 Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Rao, A. S. J. Haz. Hat 2009, 161, 589.   DOI
4 (a) Kim, S.-H.; Ko, Y.-M.; Shin, C.-H.; Kim, S.-J. J. Korean Chem. Soc. 2016, 60, 9.   DOI
5 (b) Kamlet, M. J, Hurwitz. H. J. Chem. Phys. 1968, 48, 3685.   DOI
6 Rice, B. M.; Hare, J. J.; Byrd, E. F. C. J. Phys. Chem. 2007, 111, 10874.   DOI
7 Byrd, E. F. C.; Rice, B. M. J. Phys. Chem. 2006, 110, 1005.   DOI
8 Politzer, P.; Martinez, J.; Murray, J. S.; Concha, M. C.; Toro-Labbe, A. Mol. Phys. 2009, 107, 2095.   DOI
9 Klapotke, T. M.; Petermayer, C.; Piercey, D. G.; Stierstorfer, J. J. Am. Chem. Soc. 2012, 134, 20827.   DOI
10 Gao, H.; Shreeve, J. M. Chem. Rev. 2011, 111, 7377.   DOI
11 Dippold, A. A.; Klapotke, T. M. J. Am. Chem. Soc. 2013, 135, 9931.   DOI
12 Hiskey, M. A.; Goldman, N.; Stine, J. R. J. Energetic Mater. 1998, 16, 119.   DOI
13 Politzer, P.; Murray, J. S. Propellants Explos. Pyrotech. 2016, 41, 414.   DOI
14 Landenberger, K. B.; Bolton, O.; Matzger, A. J. Angew. Chem. Int. Ed. 2013, 52, 6468.   DOI
15 Gidaspov, A. A.; Bakharev, V.V.; Suponitsky, K. Y.; Nikitin, V. G.; Sheremetev, A. B. RSC Adv. 2016, 6, 104325.   DOI
16 Zhang, J.; Shreeve, J. M. J. Am. Chem. Soc. 2014, 136, 4437.   DOI
17 Gao, H.; Ye, C.; Piekarski, C. M.; Shreeve, J. M. J. Phys. Chem. C 2007, 111, 10718.   DOI
18 Wang, K.; Parrish, D. A.; Shreeve, J. M. Chem. Eur. J. 2011, 17, 14485.   DOI
19 Zhang, J.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2015, 137, 10532.   DOI
20 Ghule, V. D. J. Phys. Chem. 2013, 117, 16840.
21 Politzer, P.; Lane, P.; Murray, S. J. Crystals 2016, 6, 7.   DOI
22 Gobel, M.; Karaghiosoff, K.; Klapotke, T. M.; Piercey, D. G.; Stierstorfer, J. J. Am. Chem. Soc. 2010, 132, 17216.   DOI
23 Tan, B.; Huang, M.; Huang, H.; Long, X.; Li, J.; Nie, F.; Huang, J. Propellants Explos. Pyrotech. 2013, 38, 372.   DOI
24 Tang, Y.; Gao, H.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Angew. Chem. 2016, 128, 1159.   DOI
25 Gao, H.; Ye, C.; Gupta, O. D.; Xiao, J.-C.; Hiskey, M. A.; Twamley, B.; Shreeve, J. M. Chem. Eur. J. 2007, 13, 3853.   DOI
26 Rahm, M.; Dvinskikh, S. V.; Furo, I.; Brinck, T. Angew. Chem. Int. Ed. 2011, 50, 1145.   DOI
27 Wu, Y.-Q.; Huang, F.-L.; Zhang, Z.-Y. RSC Adv. 2012, 2, 4152.   DOI
28 Joo, Y.-H.; Twamley, B.; Shreeve, J. M. Chem. Eur. J. 2009, 15, 9097.   DOI
29 Tang, Y.; Zhang, J.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2015, 137, 15984.   DOI
30 Cao, Y.; Huang, H.; Lin, X.; Yang, J.; Gong, X. New J. Chem. 2018, 42, 11390.   DOI
31 Haiges, R.; Belanger-Chabot, G.; Kaplan, S. M.; Christe, K. O. Dalton Trans. 2015, 44, 2978.   DOI
32 Wang, Y.; Zhang, J.; Su, H.; Li, S.; Zhang, S.; Pang, S. J. Phys. Chem. 2014, 118, 4575.   DOI
33 Politzer, P.; Martinez, J.; Murray, J. S.; Concha, M. C. Mol. Phys. 2010, 108, 1391.   DOI
34 Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Phys. Chem. 1997, 106, 1063.   DOI
35 Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Phys. Chem. 1993, 98, 1293.   DOI