• Title/Summary/Keyword: 구조용 집성재

Search Result 34, Processing Time 0.021 seconds

A Study on the Fabrication of the Laminated Wood Composed of Poplar and Larch (포푸라와 일본잎갈나무의 집성재 제조에 관한 연구)

  • Jo, Jae-Myeong;Kang, Sun-Goo;Kim, Ki-Hyeon;Chung, Byeong-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.25-31
    • /
    • 1974
  • 1. Various gluing qualities applying Resorcinol Plyophen #6000 were studied on aiming the strength relationships of laminated woods resulted by single species [poplar (Populus deltoides), larch(Larix leptolepis)], mixed species of (poplar and larch), preservatives, treated poplar the scarf joint with mixed species of poplar and larch and the scarf joint treated with preservatives. 1. 1 On the block shear and on the DVL tension test, the mean wood failure ratio showed an excellent value i.e., above 65% and the tangential strength for larch was higher than that of radial, but it was reversed for poplar as shown in Tables 1 and 2. 1. 2 The lamina treated with Na-PCP reduced slightly the strength but the limited strength allowed for manufacturing laminated wood was not influenced by treating Na-PCP as shown in Tables 3 and 4. 1. 3 The safe scarf ratio in the plane scarf joint was above 1/12 for larch and 1/6 for poplar regard less of the chemical treatment or untreatment as shown in Tables. 5, 6, 7 and 8. 2. In the normal and boiled state, the gluing quality of the laminated wood composed of single[poplar (Populus deltoides), larch (Larix leptolepis)] and double species (poplar and larch) glued with Resorcinol Plyophen #6000 were measured as follow, and also represented the delamination of the same laminated wood. 2.1 The normal block shear strength of the straight and curved laminated wood (in life size) were more than three times of the standards adhesion strength. And, the value of the boiled stock was decreased to one half of the standard shear adhesion strength, but it was more than twice the standard strength for the boiled stock. Thus, it was recognized that the water resistance of the Resorcinol Plyophen #6000 was very high as shown in Tables 9 and 10. 2. 2 The delamination ratio of the straight and curved laminated woods in respect of their composition were decraesed, in turn, in the following order i. e., larch, mixed stock (larch+poplar) and poplar. The maximum value represented by the larch was 3.5% but it was below the limited value as shown in Table 11. 3. The various strengthes i.e., compressive, bending and adhesion obtainted by the straight laminaced wood which were constructed by five plies of single and double species of lamina i. e., larch (Larix leptolepis) and poplar (Populus euramericana), glued with urea resin were shown as follows: 3. 1 If desired a higher strength of architectural laminated wood composed of poplar (P) and larch (L), the combination of the laminas should be arranged as follows, L+P+L+P+L as shown in Table 12. 3.2 The strength of laminated wood composed of laminas which included pith and knots was conside rably decreased than that of clear lamina as shown Table 13. 3.3 The shear strength of the FPL block of the straight laminated wood constructed by the same species which were glued with urea adhesives was more than twice the limited adhesion strength, thus it makes possible to use it for interior constructional stock.

  • PDF

Lateral Load Performance Evaluation of Larch Glulam Portal Frames Using GFRP-Reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 문형라멘 구조의 수평가력 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2016
  • The evaluation of the lateral load performance for larch glulam portal frames was carried out using glass fiber reinforced plastic (GFRP) as connector in two different systems: the GFRP-reinforced laminated plates combined with veneer, and GFRP rod joints glued with epoxy resins to replace usual metal connectors for the structural glulam rahmen joints. As a result the yield strength, ultimate strength, initial stiffness of glulams of GFRP rod joints glued with epoxy resin decreased to 49%, 52% and 61% compared to those of the conventional metal connector. This connector will be a stress device where the bonding strength between the GFRP rod and glued laminated timber is important. Thus, there will be a high possibility that a problem may occur when it is applied to the field. On the other hand, the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin were measured all within 3% for all measurements of the yield strength, ultimate strength, initial strength and ductility factor, regardless of high cross sectional loss on the glued laminated timber slit joint. In addition, the variation of stiffness on the cycle was 35%, which was the lowest, confirming that it was almost the same performance as the specimen prepared with the metal connector.

Evaluation of Shear Strength by Direction of Wood Grain for Korean Pine Using PRF Adhesive (페놀레조시놀공축합수지로 접착된 국산 잣나무의 목리방향별 전단성능평가)

  • Park, Sun-Hyang;Kim, Kwang-Mo;Pang, Sung-Jun;Kong, Jin Hyuk;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.243-249
    • /
    • 2017
  • This study was performed to find out the optimum adhesive conditions on manufacturing a cross-laminated timber (hereinafter CLT) with using domestic Korean Pine (Pinus koraiensis). The adhesive conditions including a applied amount of the glue and a Pressure are the one of the most important key factors on establishing CLT production process. The shear strength was examined with differing the adhesive conditions while using Phenol Resorcinol Formaldehyde Resin Adhesive (PRF resin). The optimum adhesive conditions was confirmed to be: glue spread of $250g/m^2$ and Pressure of 0.8 MPa respectively. The grain directions of glued specimens were also considered, perpendicularly bonded and parallelly bonded groups. Shear strength of the former group showed lower values than the latter group which is considered to be the effect of a rolling shear. Meanwhile the shear strength of both group satisfied the Korean Standard (KS F 3021) and the European Standard (EN 14080 and EN 16351). The results derived from this study can be used as the basic data for manufacturing the CLT with domestic Korean Pine. And additional researches for the other species including domestic Korean Larch and Pitch Pine is also now being performed.

Effects of Finger-joint on Bending Performance of Square Timbers Produced from Domestic Small Diameter Larch Logs (핑거조인트가 국산 낙엽송 소경각재의 휨성능에 미치는 영향)

  • Kim, Yun-Hui;Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.301-308
    • /
    • 2014
  • Despite Korea forest take 63.7% of the nation's territory, productivity of domestic structural lumber is low. Studies of domestic small lumbers need to be improved domestic structural timber productivity. In this study, small diameter lumber and finger joint small diameter lumber took bending test to calculate MOE and MOR. MOE of small diameter lumber was $9.3kN/mm^2$ and MOE of finger joint small diameter lumber was $15.4kN/mm^2$. Allowable standard bending stress of small diameter lumber and finger joint small diameter lumber was calculated according to ASTM D 2915. Standard allowable bending stress of small diameter lumber was $12N/mm^2$ and standard allowable bending stress of finger joint small diameter lumber was $11N/mm^2$. Standard allowable bending stress of finger joint small diameter lumber should be considered to design structural beam members.

Experimental study of composite beams consisting structural laminated timber beam with concrete slab (구조용집성재보와 콘크리트슬래브로 구성된 합성보의 실험적 연구)

  • An, Hyun-Jin;Kim, Soon-Chu;Moon, Youn-Joon;Yang, Il-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.233-236
    • /
    • 2008
  • In the traditional way floors has been constructed there are no shear connectors between the concrete slab and timber joists. In this study, an existing floor system os improved by simply providing normal bolts or lag screw so that the composite action can be achieved. It is evident that the key elements in the composite beam are the shear connectors. The selection of these connectors was based on their shear capacity. The experimental study carried out in this research investigated the flexural behavior of composite beams. The experimental studies of composite beams showed that the ultimated load capacity of the proposed composite beam(LS-S10 specimen) is 1.29 times as high as the noncomposite one. Finally, it can be concluded that LS-S10 specimen consisting structural laminated timber beam and concrete slab can be significantly improved by providing appropriate shear connectors.

  • PDF

Development of Engineered Wood using Mechanical Jointing Methods with Large Elements (대형요소의 기계적 접합법을 이용한 공학목재 개발)

  • Park, Joo-Saeng;Shim, Kug-Bo;Kim, Kwang-Mo;Park, Moon-Jae;Cho, Sung-Taig;Kim, Wae-Jung
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.34-41
    • /
    • 2006
  • In this study, new engineered woods, which can be used as structural members, are developed using three different mechanical jointing methods with large elements produced from logs in a high yield. Flitches of relatively large cross-section are produced from small or medium diameter logs, and are joined with steel bolts, wood dowesl and steel lag bolts. Static bending tests are performed for these three types of built-up beams. Built-up beams joined with steel bolts show $514kgf/cm^2$ for MOR and $129,000kgf/cm^2$ for MOE, which are close to those of typical structural glulams. In case that wood dowels and steel lag bolts are used, elements are isolated as load increases and resists the applied load individually. Therefore, built-up beams joined with wood dowels or steel lag bolts show almost half of steel bolts for both MOE and MOR. From the results of this study, it was indicated that bending properties of engineered woods manufactured using mechanical jointing methods with large elements are influenced mainly by jointing performance between each elements.

  • PDF

Moment Resistance Performance Evaluation of Larch Glulam Joints using GFRP-reinforced Laminated Plate and GFRP Rod (GFRP 보강적층판 및 GFRP rod를 이용한 낙엽송 집성재 접합부의 모멘트저항 성능평가)

  • Jung, Hong-Ju;Song, Yo-Jin;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • Instead of metal connector generally used on the structural glued laminated timber rahmen joints, the GFRP reinforced laminated plates combining veneer and GFRP (Glass Fiber Reinforced Plastic) and bonded type GFRP rod were used as the connectors. As a result of moment resistance performance evaluation on the joint part applied with these connectors, the yield moment of specimen using the GFRP reinforced laminated plates and GFRP rod pin was measured 4 % lower in comparison to the specimen (Type-1) using the metal connectors, but the initial rotational stiffness was measured 29% higher. Also, the yield moment and rotational stiffness of the specimen using the GFRP-reinforced laminated plates and wood (Eucalyptus marginata) pin showed were measured 11% and 56% higher in comparison to the Type-1 specimen, showing the best performance. It was also confirmed through the failure shape and perfect elasto-plasticity analysis that it showed ductility behavior, not brittle fracture, from the shear resisting force by the pin and the bonding strength increased and the unification of member was carried out. On the other hand, in case of the specimen bonded with GFRP rod, it was impossible to measure the bonding performance or it was measured very low due to poor bonding.

Development of a Separable Glued-Laminated Timber (GLT)-Steel Beam for Eco-Friendly Construction and Dismantling of Buildings (건축물의 친환경 시공·해체를 위한 재료 분리형 GLT-Steel 보 개발)

  • Pang, Sung-Jun;Oh, Jung-Kwon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.23-24
    • /
    • 2023
  • In this study, an easily recyclable separable glued-laminated timber (GLT)-steel beam was developed, and a structural design method was presented. The GLT and steel were mechanically composited using self-tapping screws. The GLT-steel beam was designed to fail in the compression of GLT. The bending moment and load-carrying capacity of the GLT-steel beam were predicted based on composite beam theory and compared with experimental test data. As a result, the GLT-steel beam exhibited ductile behavior, and compression failure of GLT was observed. The screw connection showed no damage while the steel plate was extended. The load-carrying capacity of GLT after failure was similar to the load resistance predicted by the compressive strength of GLT and the tensile strength of steel. This indicates that the ductile behavior of the GLT-steel beam can be safely designed by the tensile strength (yield) of steel.

  • PDF

Experimental Study on Pull-out Strength of Glued-in Rods Connection according to Adhesive (접착제에 따른 Glued-in Rod 접합부 인발성능에 관한 실험 연구)

  • Park, Keum-Sung;Oh, Keunyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.2
    • /
    • pp.149-160
    • /
    • 2022
  • In this study, a pull-out test considering the adhesive type, embedded length, and direction of re-bar was conducted to evaluate the pull-out performance of glued-in rod joints using timber and adhesive produced in Korea. In the test, the specimens using liquid adhesive showed better pull-out performance, and the longer the embedded length of the re-bar, the higher the maximum tensile load by inducing the yield of the re-bar first. Through the test results, a glued-in rod joints design, which is advantageous to design the adhesive strength stronger than the yield strength of re-bar, was proposed, and a correction factor of 0.75 for the adhesive strength considering construction error was also suggested.

Bonding Properties and Resin Exudation Characteristics of Pitch Pine (리기다소나무재의 수지 삼출성과 접착 특성)

  • Roh, JeongKwan;Kim, Yun Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.213-220
    • /
    • 2018
  • In order to use Pitch pine (Pinus rigida Miller) as the material of the structural glued laminated timber, the effect of the amount of resin exudation due to storage time after the planning and the knot of the lamina were evaluated on the bonding properties of the glued board with resorcinol resin. For Pitch pine that was dried at high temperature ($120{\sim}95^{\circ}C$) and low temperature ($65{\sim}50^{\circ}C$), the flat sawn(tangential section) showed higher amount of resin exudation than the quarter sawn(radial section). And the low temperature drying wood showed higher resin exudation than the high temperature drying wood. The low and high temperature drying wood showed the highest amount of resin exudation on the 3rd day and 7th day, respectively and they were gradually decreased. However, there were no significant differences from 15 to 90 days. Adhesion performances were low until 2~3 days with high exudation of resin, but there were no significant differences after 15 days. Both high temperature and low temperature drying woods satisfied the Korean standard regardless of the storage time. The adhesive strengths of the laminating parts including knots were higher than those of KS criteria, but the wood failures were not satisfied the KS standard. Adhesive performances according to the laminating combinations (quarter sawn + quarter sawn, flat sawn + flat sawn, quarter sawn + flat sawn) were better than those of KS criteria in all laminating combinations in both high temperature and low temperature drying woods.