• Title/Summary/Keyword: 구조물 변위

Search Result 1,353, Processing Time 0.033 seconds

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

Strength Characteristics of Hollow Prestressed Concrete Filled Steel Tube Piles for Hybrid Composite Piles (복합말뚝용 중공형 콘크리트 충전 강관말뚝의 강도 특성)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.37-46
    • /
    • 2018
  • Hollow prestressed concrete filled steel tube (HCFT) piles, which compose hollow PHC piles inside thin wall steel tubes, are developed. In order to investigate the strength characteristics of HCFT piles, flexural and shear tests were conducted on HCFT piles as well as PHC and steel pipe piles with the same diameter. Results of the test program showed that the flexural strength of HCFT piles was 2.88 and 1.19 times those of ICP and steel pipe piles with thickness of 12 mm, respectively, and its shear strength was 2.40 times that of steel pipe piles. The shear key attached to the inside of thin wall steel tube did not affect the flexural behavior of HCFT piles. It was also observed that the flexural strengths of HCFT piles with diameters of 450 and 500 mm were 35 to 63% higher than the sum of the flexural strengths of its components, respectively, because the strength of concrete in compressive zone increased by confining effect of thin wall steel tube on concrete. HCFT piles used as upper piles in hybrid composite piles might decrease the lateral displacement and increase the structural safety of structures subjected to lateral loads.

Modeling and Analysis of Size-Dependent Structural Problems by Using Low-Order Finite Elements with Strain Gradient Plasticity (변형률 구배 소성 저차 유한요소에 의한 크기 의존 구조 문제의 모델링 및 해석)

  • Park, Moon-Shik;Suh, Yeong-Sung;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1041-1050
    • /
    • 2011
  • An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers.

The 33-mode Dielectric and Piezoelectric Properties of PIN-PMN-PT Single Crystal under Stress and Electric Field (압축하중 및 전계 인가에 따른 PIN-PMN-PT 단결정의 33-모드 유전 및 압전특성)

  • Lim, Jae Gwang;Park, Jae Hwan;Lee, Jeongho;Lee, Sang Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.91-96
    • /
    • 2020
  • The 33-mode dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric single crystals were measured under large electric field and compressive stress. The phase transition from the low temperature rhombohedral to the high temperature tetragonal structure was observed in the range of 110~140℃, and the Curie temperature changing to the cubic structure was about 165℃. The polarization change according to the compressive stress and electric field was measured. Relative dielectric constant was calculated from the slope of the polarization curve applied to the electric field, and the calculated relative dielectric constant increased as the applied stress increased, and the relative dielectric constant decreased as the applied electric field increased. The strain according to the compressive stress and electric field change was measured, the piezoelectric constant was calculated from the slope of the curve, and the phase transition according to the application of pressure was confirmed. In the case of practical application as an underwater or medical ultrasonic actuator, it is necessary to properly design the magnitude of the compressive stress applied to the device and the DC bias in order to maintain linear driving.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.

A Study on Prediction of Earth Retaining Work Cost in the Project Planning Stage -Focusing on Apartment Construction Projects in Seoul- (사업기획단계에서 흙막이 공사비 예측에 관한 연구 -서울시내 아파트 건설사업을 중심으로-)

  • Lee, Jin-Kyu;Yang, Kyung-Jin;Park, Ki-Hyeon;Kim, Chan-kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.385-392
    • /
    • 2021
  • In general, earth retaining work in construction works enables the construction of structures, prevents the displacement of the surrounding ground to the maximum extent, and plays an important role in ensuring the safety of the surrounding structures and field workers. The earth retaining work and the construction method differ according to the various ground characteristics, surrounding topographical characteristics, repair environment, and design conditions. In particular, in the case of Seoul city, the environments and ground conditions differ according to the area. This study analyzed the earth retaining work cost mainly for the apartment construction project in Seoul and calculated the approximate earth retaining work cost at the project planning stage. A model was developed to predict the cost of earth retaining work that matches the characteristics of Seoul City and predict the construction cost for earth retaining work. This paper presents the predicted earth retaining work cost using a multiple regression model that applies 10 project outlines as independent variables. The error rate of the prediction result of the earth retaining work cost of the apartment construction project in Seoul using multiple regression models was 10.75%.

Accuracy Evaluation of Non-prism Total Station for Topographic Surveying (지형측량을 위한 무 프리즘 토털스테이션 정확도 평가)

  • Seo, Dong-Ju
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.433-441
    • /
    • 2006
  • With a development of electrical technology in recent, it is possible to measure distance without direct contact to object using laser which launched at instrument and reflect from object. Furthermore, the advent of non prism total station brought the increment of application in many fields including not only road, airport, and harbors but also measurement and monitoring of structural displacement in construction fields. In this study, therefore, to evaluate accuracy of non prism total station, accuracy was analyzed by measuring certain distance which classified by both certain materials and angle of reflection. By this method, the derived values were applied to topographical survey for the efficient applicability. According to a study, result value of non prism total station was satisfBctory regardless of material when the angle of reflection was 90 degrees. RMSE increased when the angle of reflection are gradually increased to acute angle. In result of regression analysis using certain distance which classified by both materials and angles of reflection, there is relationship between distance and angle of reflection, but material has no relevance to the result value. When carrying out general topographical survey, proper application of non prism total station will go far conducting safe and prompt survey at the dangerous site such a road which have lots of traffic flow and rock joint which have high angles of inclination.

The Volumetric Ratio of Transverse Reinforcement of R/C Columns Considering Effective Lateral Confining Reduction Factor (유효횡구속압력 감소계수를 사용한 RC 기둥의 횡보강근량 평가)

  • Kim, Jong-Keun;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.311-318
    • /
    • 2009
  • An experimental investigation was conducted to examine the hysteretic behaviors of ultra-high strength concrete tied columns. The purpose of this study is to propose the volumetric ratio of transverse reinforcement for ultra-high strength concrete tied columns with 100 MPa compressive strength. Nineteen 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the main variables of axial load ratio, configurations and volumetric ratios of transverse reinforcement. The results show that the deformability of columns are affected by the configurations and volumetric ratios of transverse reinforcement. Especially, it has been found that the behavior of columns are affected by axial load ratio rather than the amounts and the configurations of transverse reinforcement. To improve the ductility behavior of RC column using ultra high strength concrete in a seismic region, We suggested the amount of transverse reinforcement for all data that satisfy the required displacement ductility ratio over 4. It is means that the lateral confining reduction factor (${\lambda}^c$) considering the effective legs, configuration and spacing of transverse reinforcement and axial load ratio was reflected for the volumetric ratio of transverse reinforcement.

Numerical Analysis on Bearing Capacity of a Suction Bucket in Clay (수치해석을 이용한 점성토 지반에 설치된 버켓기초의 지지력 분석)

  • Le, Chi-Hung;Jeong, Jae-Uk;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.25-33
    • /
    • 2011
  • Suction buckets have been widely used for offshore structures such as anchors for floating facilities, and the foundations of offshore wind energy turbines. However, the design guidelines for suction buckets have not been clearly suggested. Therefore, this study performed the numerical analysis by using ABAQUS (2010) to evaluate bearing capacities and load-movement behaviors of the suction bucket in NC clay. For the numerical analysis, the depth ratio L/D (L=embedded length of skirt; D=diameter of a bucket) was varied from 0.25 to 1.0. The analysis results showed that the L/D ratio has a significant effect on the bearing capacity, and the vertical and horizontal capacities respectively increased by about 40% and 90%, when L/D ratio increased from 0.25 to 1.0. At the vertical loading, the bucket showed the similar failure mode with a deep foundation, so the shaft and toe resistances can be separately evaluated. At the horizontal loading, the bucket with L/D=O.25 showed the sliding failure mode and the bucket with $L/D{\geq}0.5$ showed the rotational failure mode.

Direct Time Domain Method for Nonlinear Earthquake Response Analysis of Dam-Reservoir Systems (댐-호소계 비선형 지진응답의 직접시간영역 해석기법)

  • Lee, Jin-Ho;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • An analysis method is proposed for the transient linear or nonlinear analysis of dynamic interactions between a flexible dam body and reservoir impounding compressible water under earthquake loadings. The coupled dam-reservoir system consists of three substructures: (1) a dam body with linear or nonlinear behavior; (2) a semi-infinite fluid region with constant depth; and (3) an irregular fluid region between the dam body and far field. The dam body is modeled with linear and/or nonlinear finite elements. The far field is formulated as a displacement-based transmitting boundary in the frequency domain that can radiate energy into infinity. Then the transmitting boundary is transformed for the direct coupling in the time domain. The near field region is modeled as a compressible fluid contained between two substructures. The developed method is verified and applied to various earthquake response analyses of dam-reservoir systems. Also, the method is applied to a nonlinear analysis of a concrete gravity dam. The results show the location and severity of damage demonstrating the applicability to the seismic evaluation of existing and new dams.