DOI QR코드

DOI QR Code

Modeling and Analysis of Size-Dependent Structural Problems by Using Low-Order Finite Elements with Strain Gradient Plasticity

변형률 구배 소성 저차 유한요소에 의한 크기 의존 구조 문제의 모델링 및 해석

  • 박문식 (한남대학교 기계공학과) ;
  • 서영성 (한남대학교 기계공학과) ;
  • 송승 (한남대학교 기계공학과)
  • Received : 2011.05.03
  • Accepted : 2011.07.18
  • Published : 2011.09.01

Abstract

An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers.

미크론 단위의 크기를 갖는 구조물의 소성변형에서 나타나는 길이 효과를 고려하여 유한요소 해석을 하기 위하여 변형률 구배 소성이론을 이용하는 탄소성 유한요소 모델링 및 해석법을 제안하였다. 기존의 연구에서 주로 고차, 고자유도 및 혼합요소, 초 요소 등을 필요로 하였던 것에 비하여 본 논문에서는 이들을 배제하는 변위법 저차 평면 요소 및 삼차원 요소를 도입하였다. 이는 비선형 증분 해석의 프레임워크에서 계산된 소성 변형률의 절점 평균값으로 보간하여 적분점에서의 변형률 구배를 구하고 테일러 전위 모델에 의한 변형률 경화 구성방정식을 적용하므로서 가능하였다. 제안된 방법론은 선형 삼각 및 사각요소, 선형 사면체, 육면체 요소에 대해 적용되었으며 마이크로 굽힘, 마이크로 비틀림, 마이크로 기공과 같은 대표적인 길이 스케일 문제를 통하여 수치적으로 검증하였다. 본 논문에서 제안한 방법은 계산이 매우 쉬우면서도 실험값들과 비교해 볼 때, 변형률 구배 소성이론 즉, 길이 효과를 잘 나타내어 주었다.

Keywords

References

  1. Cosserat, E., Cosserat, F., Brocato, M. and Chatzis, K., 1909, Theorie des corps deformables, A. Hermann Paris.
  2. Toupin, R., 1962, "Elastic Materials with Couple- Stresses," Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, pp. 385-414. https://doi.org/10.1007/BF00253945
  3. Mindlin, R., 1964, "Micro-Structure in Linear Elasticity," Archive for Rational Mechanics and Analysis, Vol. 16, No. 1, pp. 51-78.
  4. Koiter, W., 1964, Couple Stresses in the Theory of Elasticity, I and II., Proc. K. Ned. Akad. Wet.(B), Vol. 67, No. 1, pp. 17-44.
  5. Gao, X. L., Park, S. K. and Ma, H. M., 2009, "Analytical Solution for a Pressurized Thick-Walled Spherical Shell Based on a Simplified Strain Gradient Elasticity Theory," Mathematics and Mechanics of Solids, Vol. 14, No. 8, pp. 747-758. https://doi.org/10.1177/1081286508097638
  6. Wang, B., Zhao, J. and Zhou, S., 2010, "A Micro Scale Timoshenko Beam Model Based on Strain Gradient Elasticity Theory," European Journal of Mechanics, A/Solids, Vol. 29, No. 4, pp. 591-599. https://doi.org/10.1016/j.euromechsol.2009.12.005
  7. Fleck, N. A., Muller, G. M., Ashby, M. F. and Hutchinson, J. W., 1994, "Strain Gradient Plasticity: Theory and Experiment," Acta Metallurgica Et Materialia, Vol. 42, No. 2, pp. 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
  8. McElhaney, K. W., Vlassak, J. J. and Nix, W. D., 1998, "Determination of Indenter Tip Geometry and Indentation Contact Area for Depth-Sensing Indentation Experiments," Journal of Materials Research, Vol. 13, No. 5, pp. 1300-1306. https://doi.org/10.1557/JMR.1998.0185
  9. Stolken, J. S. and Evans, A. G., 1998, "A Microbend Test Method for Measuring the Plasticity Length Scale," Acta Materialia, Vol. 46, No. 14, pp. 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
  10. Lloyd, D. J., 1994, "Particle Reinforced Aluminum and Magnesium Matrix Composites," International Materials Reviews, Vol. 39, No. 1, pp. 1-23. https://doi.org/10.1179/imr.1994.39.1.1
  11. Aifantis, E. C., 1999, "Strain Gradient Interpretation of Size Effects," International Journal of Fracture, Vol. 95, pp. 299-314. https://doi.org/10.1023/A:1018625006804
  12. Fleck, N. and Hutchinson, J. , 1997, "Strain Gradient Plasticity," Advances in Applied Mechanics, Vol. 33, pp. 295-361. https://doi.org/10.1016/S0065-2156(08)70388-0
  13. Gao, H., Huang, Y., Nix, W. D. and Hutchinson, J. W., 1999, "Mechanism-Based Strain Gradient Plasticity - I. Theory," Journal of the Mechanics and Physics of Solids, Vol. 47, No.6, pp. 1239-1263. https://doi.org/10.1016/S0022-5096(98)00103-3
  14. Evans, A. G. and Hutchinson, J. W., 2009, "A Critical Assessment of Theories of Strain Gradient Plasticity," Acta Materialia, Vol. 57, No. 5, pp. 1675-1688. https://doi.org/10.1016/j.actamat.2008.12.012
  15. . Y., King, W. E. and Fleck, N. A., 1999, "Finite Elements for Materials with Strain Gradient Effects," International Journal for Numerical Methods in Engineering, Vol. 44, No.3, pp. 373-391. https://doi.org/10.1002/(SICI)1097-0207(19990130)44:3<373::AID-NME508>3.0.CO;2-7
  16. Soh, A. and Wanji, C., 2004, "Finite Element Formulations of Strain Gradient Theory for Microstructures and the C0-1 Patch Test," International Journal for Numerical Methods in Engineering, Vol. 61, No. 3, pp. 433-454. https://doi.org/10.1002/nme.1075
  17. Gao, H. and Huang, Y., 2001, "Taylor-Based Nonlocal Theory of Plasticity," International Journal of Solids and Structures, Vol. 38, No. 15, pp. 2615-2637. https://doi.org/10.1016/S0020-7683(00)00173-6
  18. Abu Al-Rub, R. K. and Voyiadjis, G. Z., 2005, "A Direct Finite Element Implementation of the Gradient- Dependent Theory," International Journal for Numerical Methods in Engineering, Vol. 63, No. 4, pp. 603-629. https://doi.org/10.1002/nme.1303
  19. Byon, S. M. and Lee, Y., 2006, "Deformation Analysis of Micro-Sized Material Using Strain Gradient Plasticity," Journal of Mechanical Science and Technology, Vol. 20, No. 5, pp. 621-633. https://doi.org/10.1007/BF02915979
  20. Abu Al-Rub, R. K. and Voyiadjis, G. Z., 2006, "A Physically Based Gradient Plasticity Theory," International Journal of Plasticity, Vol. 22, No. 4, pp. 654-684. https://doi.org/10.1016/j.ijplas.2005.04.010
  21. Fleck, N. A. and Hutchinson, J. W., 2001, "A Reformulation of Strain Gradient Plasticity," Journal of the Mechanics and Physics of Solids, Vol. 49, No. 10, pp. 2245-2271. https://doi.org/10.1016/S0022-5096(01)00049-7
  22. Shrotriya, P., Allameh, S. M., Lou, J., Buchheit, T. and Soboyejo, W. O., 2003, "On the Measurement of the Plasticity Length Scale Parameter in LIGA Nickel Foils," Mechanics of Materials, Vol. 35, No. 3-6, pp. 233-243. https://doi.org/10.1016/S0167-6636(02)00273-9
  23. Arsenlis, A. and Parks, D. M., 1999, "Crystallographic Aspects of Geometrically-Necessary and Statistically- Stored Dislocation Density," Acta Materialia, Vol. 47, No.5, pp. 1597-1611. https://doi.org/10.1016/S1359-6454(99)00020-8
  24. Dassault Systemes Simulia, Inc., 2010, Abaqus v. 6.9, Providence, U.S.A.
  25. Shu, J. Y., 1998, "Scale-Dependent Deformation of Porous Single Crystals," International Journal of Plasticity , Vol. 14, No. 10-11, pp.1085-1107. https://doi.org/10.1016/S0749-6419(98)00048-5
  26. Fleck, N. A. and Willis, J. R. 2009, "A Mathematical Basis for Strain-Gradient Plasticity Theory. Part II: Tensorial Plastic Multiplier," Journal of the Mechanics and Physics of Solids,Vol. 57, No. 7, pp. 1045-1057 https://doi.org/10.1016/j.jmps.2009.03.007
  27. Idiart, M. I., Deshpande, V. S., Fleck, N. A. and Willis, J. R., 2009, "Size Effects in the Bending of Thin Foils," International Journal of Engineering Science, Vol. 47, No. 11-12, pp. 1251-1264. https://doi.org/10.1016/j.ijengsci.2009.06.002
  28. Guo, Y., Huang, Y., Gao, H., Zhuang, Z. and Hwang, K. C., 2001, "Taylor-Based Nonlocal Theory of Plasticity: Numerical Studies of the Micro-Indentation Experiments and Crack Tip Fields," International Journal of Solids and Structures, Vol. 38, No. 42-43, pp. 7447-7460. https://doi.org/10.1016/S0020-7683(01)00047-6
  29. Byon, S. M., Moon, C. H. and Lee, Y., 2010, "Strain Gradient Plasticity Based Finite Element Analysis of Ultra-Fine Wire Drawing Process," Journal of Mechanical Science and Technology, Vol. 23, No. 12, pp. 3374-3384. https://doi.org/10.1007/s12206-009-0926-y
  30. Han, C.-S., Ma, A., Roters, F. and Raabe, D., 2007, "A Finite Element Approach with Patch Projection for Strain Gradient Plasticity Formulations," International Journal of Plasticity, Vol. 23, No.4, pp. 690-710. https://doi.org/10.1016/j.ijplas.2006.08.003

Cited by

  1. Hardness estimation for pile-up materials by strain gradient plasticity incorporating the geometrically necessary dislocation density vol.27, pp.2, 2013, https://doi.org/10.1007/s12206-012-1243-4