• Title/Summary/Keyword: 구속운동

Search Result 128, Processing Time 0.03 seconds

Constraint-Based Modeling of Human Hands (구속조건 기반의 손 모델)

  • Choi, Haeock;Song, Mankyun;Jun, Byoungmin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Technology for the realistic model and the motion control of human is applied to many areas of computer graphics, virtual reality and computer simulations. Human body is a multi-articular body. Generally, to create a human model and motions. articulated body models are generated and their motions are controlled based upon kinematics. The hand of the human consists of many small articulations and each articulations have a various degree of freedom. This paper presents a model of human hand which is based on the two kinds of constraints to control the motions of the hand realistically. To build a hand model, we experimented the anatomy of the human hand, and the diverse motions of the hand are tested.

  • PDF

A Formulation of the Differential Equation on the Equations of Motion and Dynamic Analysis for the Constrained Multibody Systems (구속된 다물체 시스템에 대한 운동 방정식의 미분 방정식화 및 동역학 해석)

  • 이동찬;이상호;한창수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.154-161
    • /
    • 1997
  • This paper presents the method to eliminate the constraint reaction in the Lagrange multiplier form equation of motion by using a generalized coordinate driveder from the velocity constraint equation. This method introduces a matrix method by considering the m dimensional space spanned by the rows of the constraint jacobian matrix. The orthogonal vectors defining the constraint manifold are projected to null vectors by the tangential vectors defined on the constraint manifold. Therefore the orthogonal projection matrix is defined by the tangential vectors. For correcting the generalized position coordinate, the optimization problem is formulated. And this correction process is analyzed by the quasi Newton method. Finally this method is verified through 3 dimensional vehicle model.

  • PDF

Jumping Control of a Cat Robotic System by Model Transformation (모델변환에 의한 고양이 로봇 시스템의 점핑제어)

  • Suh, Jin-Ho;Yamakita, Masaki;Kim, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2427-2429
    • /
    • 2002
  • 본 논문에서는, 지붕위로 뛰어오르기 위하여 벽의 반동을 이용하는 고양이의 운동상태를 흉내내어 수직의 방향으로 운동하는 고양이 로봇 시스템을 연구한다. 또한 이러한 로봇 시스템의 3-link 부분시스템의 운동은 slider-link에서 구속되어지고, 또한 singular자세를 쉽게 피할 수 있는 운동계획방법(motion planning method)을 제안한다. 제안되어진 연구결과는 수직동작에 대한 메카니즘에 유용한 방법이고 이론적 개념, 모델링, 그리고 제어를 논의한다. 마지막으로, 모의실험을 통한 결과로서 제안되어진 방법의 유용성을 설명한다.

  • PDF

Review of the Reasons in Cases Requiring Varus/Valgus Constrained Prosthesis in Primary Total Knee Arthroplasty (일차 슬관절 전치환술 시내·외반 구속형 치환물이 필요했던 사례들의 원인 분석)

  • Kong, Dong Yi;Park, Sang Hoon;Choi, Choong Hyeok
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.3
    • /
    • pp.253-260
    • /
    • 2021
  • Purpose: The least constrained prosthesis is generally recommended in primary total knee arthroplasty (TKA). Nevertheless, a varus/valgus constrained (VVC) prosthesis should be implanted when a semi-constrained prosthesis is not good for adequate stability, especially in the coronal plane. In domestic situations, however, the VVC prosthesis could not always be prepared for every primary TKA case. Therefore, it is sometimes impractical to use a VVC prosthesis for unsual unstable situations. This study provides information for preparing VVC prostheses in the preoperative planning of primary TKA through an analysis of primary VVC TKA cases. Materials and Methods: This study reviewed 1,797 primary TKAs, performed between May 2003 and February 2016. The reasons for requiring VVC prosthesis and the preoperative conditions in 29 TKAs that underwent primary TKA with a VVC prosthesis were analyzed retrospectively. Results: In primary TKA, 29 cases (1.6%) in 27 patients (6 male and 21 female) used VVC prosthesis. Two patients underwent a VVC prosthesis on both knees. The mean age of the patients was 63.4 years old (34-79 years). The mean flexion contracture was 16.2° (-20°-90°), and the mean angle of great flexion was 111.7° (35°-145°). The situations requiring a VVC prosthesis were severe valgus deformity in 10 knees, knee stiffness requiring extensive soft tissue release in 10 knees, previously injured collateral ligaments in five knees, and distal femoral bone defect due to avascular necrosis in four knees. The mean tibiofemoral angle was 25.7° (21°-43°) in 10 cases with a valgus deformity. The mean flexion contracture was 37.5° (20°-90°), and the mean range of motion was 48.5° (10°-70°) in 10 cases with knee stiffness. Conclusion: The preparation of VVC prosthesis is recommended, even for primary TKA in cases of severe valgus deformity (tibiofemoral angle>20°), stiff knee (the range of motion: less than 70° with more than 20° flexion contracture), and the cases with a previous collateral ligament injury. This information will help in the preparation of adequate TKA prostheses for unusual unstable situations.

Calculation of Critical Speed of Railway Vehicle by Multibody Dynamics Analysis (다물체 동역학 해석방법을 이용한 철도차량의 임계속도 계산)

  • Kang, Juseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1371-1377
    • /
    • 2013
  • In this analysis, a method is presented to calculate the critical speed of a railway vehicle by using a multibody dynamic model. The contact conditions and contact forces between the wheel and the rail are formularized for the wheelset model. This is combined with the bogie model to obtain a multibody dynamic model of a railway vehicle with constraint conditions. First-order linear dynamic equations with independent coordinates are derived from the constraint equations and dynamic equations of railway vehicles using the QR decomposition method. Critical speeds are calculated for the wheelset and bogie dynamic models through an eigenvalue analysis. The influences of the design parameters on the critical speed are presented.

A Study on Numerical Analysis of Equation of Motion for Constrained Systems (구속된 시스템 운동방정식의 수치해석에 관한 연구)

  • 은희창;정헌수
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.773-780
    • /
    • 1997
  • Using Generalized Inverse Method presented by Udwadia and Kalaba in 1992, we can obtain equations to exactly describe the motion of constrained systems. When the differential equations are numerically integrated by any numerical integration scheme, the numerical results are generally found to veer away from satisfying constraint equations. Thus, this paper deals with the numerical integration of the differential equations describing constrained systems. Based on Baumgarte method, we propose numerical methods for reducing the errors in the satisfaction of the constraints.

  • PDF

A Study on Motion Constraint of Rotating Spindle in the Parallel Part at the Blocking Plate (평형부 내에서 회전 운동을 하는 스핀들의 운동 구속에 대한 연구)

  • Lim Jong Hyun;Han Geun Jo;Shim Jae Joon;Han Dong Seop;Lee Seong Wook;Kim Tae Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.136-142
    • /
    • 2005
  • The function of main starting valve for marine engine is to supply cylinder with the air to start marine engine. But, if the spindle, one of the main starting valve components, doesn't rotate accurately at the designated air pressure, the marine engine may have some trouble in starting. So, to resolve the problem due to spindle .elation in the main starting valve, the blocking device (blocking plate, limit switch, etc.) is installed in the upper part of spindle to constrain the rotation. So, in this paper we introduced the rotation constraining ability of blocking plate prevent the spindle from mis-working in the main starting value of the marine engine.

Vibration Characteristics of a Cantilevered Beam with Restrained Motions (제한된 운동을 갖는 외팔보의 진동특성)

  • 최봉문;류봉조;윤충섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.578-582
    • /
    • 2000
  • When the motion of vibrating structure is restrained due to the adjacent objects, the frequencies and the mode shapes of the structure change and its vibration characteristics becomes unpredictable, in general. Although the importance of the study on this type of vibration model increases in many engineering areas, most studies conducted so far are limited to the theoretical study on dynamic responses of the structure with the separation plate, including some experimental works. In the paper, both numerical analyses and experiments are conducted to study the chaotic vibration characteristics and the dynamic response of a fixed-free beam which has restrained motion at the free end by the separation plates. Results are presented for various magnetic forces and gaps between stops.

  • PDF

Research on the Prediction of Maneuvering Motion for a Twin-Screw Twin-Rudder Ship (2축(軸)2타선(舵船)의 조종운동 추정(推定)에 관한 연구)

  • Lee, Seung Keon;Kim, Yoon Su;Lee, Seung Jae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.60-65
    • /
    • 1996
  • Mathematical model of maneuvering motion for a single-screw single-rudder ship established and versatile applications to the special situations of maneuvering are attempted. While, the mathematical model for twin-screw twin-rudder ship is not presented so much, because that type of ship is not popular. Lee et al. have examined the characteristics of such ship by captive model tests in 1988. This paper treats new mathematical models for propeller effective wake ($1-w_p$) and effective neutral rudder angle ${\delta}_R$ in the case of twin-screw twin-rudder ship. And some maneuvering motions are calculated with proposed models and compared with exact simulations.

  • PDF

Mid-course Trajectory Optimization for Boost-Glide Missiles Based on Convex Programming (컨벡스 프로그래밍을 이용한 추진-활공 유도탄의 중기궤적 최적화)

  • Kwon, Hyuck-Hoon;Hong, Seong-Min;Kim, Gyeong-Hun;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • Mid-course trajectory of the missiles equipped with seeker should be designed to detect target within FOV of seeker and to maximize the maneuverability at the point of transition to terminal guidance phase. Because the trajectory optimization problems are generally hard to obtain the analytic solutions due to its own nonlinearity with several constraints, the various numerical methods have been presented so far. In this paper, mid-course trajectory optimization problem for boost-glide missiles is calculated by using SOCP (Second-Order Cone Programming) which is one of convex optimization methods. At first, control variable augmentation scheme with a control constraint is suggested to reduce state variables of missile dynamics. And it is reformulated using a normalized time approach to cope with a free final time problem and boost time problem. Then, partial linearization and lossless convexification are used to convexify dynamic equation and control constraint, respectively. Finally, the results of the proposed method are compared with those of state-of-the-art nonlinear optimization method for verification.