DOI QR코드

DOI QR Code

Review of the Reasons in Cases Requiring Varus/Valgus Constrained Prosthesis in Primary Total Knee Arthroplasty

일차 슬관절 전치환술 시내·외반 구속형 치환물이 필요했던 사례들의 원인 분석

  • Kong, Dong Yi (Department of Orthopedic Surgery, Juan Nanoori Hospital) ;
  • Park, Sang Hoon (Department of Orthopedic Surgery, Hanyang University College of Medicine) ;
  • Choi, Choong Hyeok (Department of Orthopedic Surgery, Hanyang University College of Medicine)
  • 공동의 (주안 나누리병원 정형외과) ;
  • 박상훈 (한양대학교 의과대학 정형외과학교실) ;
  • 최충혁 (한양대학교 의과대학 정형외과학교실)
  • Received : 2020.05.22
  • Accepted : 2020.08.31
  • Published : 2021.06.30

Abstract

Purpose: The least constrained prosthesis is generally recommended in primary total knee arthroplasty (TKA). Nevertheless, a varus/valgus constrained (VVC) prosthesis should be implanted when a semi-constrained prosthesis is not good for adequate stability, especially in the coronal plane. In domestic situations, however, the VVC prosthesis could not always be prepared for every primary TKA case. Therefore, it is sometimes impractical to use a VVC prosthesis for unsual unstable situations. This study provides information for preparing VVC prostheses in the preoperative planning of primary TKA through an analysis of primary VVC TKA cases. Materials and Methods: This study reviewed 1,797 primary TKAs, performed between May 2003 and February 2016. The reasons for requiring VVC prosthesis and the preoperative conditions in 29 TKAs that underwent primary TKA with a VVC prosthesis were analyzed retrospectively. Results: In primary TKA, 29 cases (1.6%) in 27 patients (6 male and 21 female) used VVC prosthesis. Two patients underwent a VVC prosthesis on both knees. The mean age of the patients was 63.4 years old (34-79 years). The mean flexion contracture was 16.2° (-20°-90°), and the mean angle of great flexion was 111.7° (35°-145°). The situations requiring a VVC prosthesis were severe valgus deformity in 10 knees, knee stiffness requiring extensive soft tissue release in 10 knees, previously injured collateral ligaments in five knees, and distal femoral bone defect due to avascular necrosis in four knees. The mean tibiofemoral angle was 25.7° (21°-43°) in 10 cases with a valgus deformity. The mean flexion contracture was 37.5° (20°-90°), and the mean range of motion was 48.5° (10°-70°) in 10 cases with knee stiffness. Conclusion: The preparation of VVC prosthesis is recommended, even for primary TKA in cases of severe valgus deformity (tibiofemoral angle>20°), stiff knee (the range of motion: less than 70° with more than 20° flexion contracture), and the cases with a previous collateral ligament injury. This information will help in the preparation of adequate TKA prostheses for unusual unstable situations.

목적: 일차 슬관절 전치환술 시에는 일반적으로 가능한 한 구속력이 적은 치환물을 이용한 슬관절 전치환술이 권장된다. 그럼에도 불구하고 후방 십자인대 보존형 혹은 대치형 치환물로 적절한 슬관절 안정성을 얻기가 불가능한 경우에는 수술 중 내·외반 구속형 슬관절 치환물로 전환을 고려해야 한다. 내·외반 구속형 치환물이 항시 구비되어 있지 않는 국내 현실을 감안하여 일차 슬관절 전치환술의 효율적인 술 전 계획을 위해 내·외반 구속형 슬관절 치환물을 준비하는 적응증을 제시하고자 본 연구를 시행하였다. 대상 및 방법: 2003년 5월부터 2016년 2월까지 시행되었던 일차 슬관절 전치환술 1,797예 중 내·외반 구속형 슬관절 치환물로 일차 슬관절 전치환술이 시행되었던 27명(29예)를 대상으로 내·외반 구속형 슬관절 치환물로 최종 결정한 원인 등을 후향적으로 분석하였다. 결과: 일차 슬관절 전치환술 시 내·외반 구속형 슬관절 치환물이 사용된 경우는 전체 일차 슬관절 전치환술 중 29예로 1.6%의 빈도를 보였다. 남자 6명, 여자 21명이었으며, 2명에서 양측 모두 내·외반 구속형 치환물이 필요하였다. 환자의 나이는 평균 63.4세(34-79세)였고, 술 전 최대신전각도는 평균 16.2° (-20°-90°), 최대굴곡각도는 평균 111.7° (35°-145°)였다. 일차 슬관절 전치환술 시 내·외반 구속형 치환물이 필요하였던 원인으로는 심한 외반 변형으로 내·외반 불안정성을 보강하기 위한 경우가 10예, 심한 강직으로 인해 내·외반 구속형 치환물이 사용되었던 경우가 10예였으며, 과거력상 내측측부인대 4예, 외측측부인대 1예, 원위 대퇴골과의 무혈성 괴사로 인한 경우가 4예였다. 심한 외반 변형으로 수술을 시행한 10예 경우의 술 전 슬관절 전후방기립 사진상 해부학적 대퇴경골간각은 평균 25.7° (21°-43°)의 외반각을 보였고, 심한 강직으로 수술을 시행한 10예 경우의 굴곡 구축은 평균 37.5° (20°-90°), 관절운동범위는 평균 48.5° (10°-70°)였다. 결론: 20° 이상의 해부학적 대퇴경골간각의 외반 변형, 굴곡 구축 20° 이상 및 관절운동범위 70° 이하를 가진 관절운동 제한, 과거 측부인대 손상 병력이 의심되는 경우에는 일차슬관절 전치환술 시라도 술 전 계획 시 내·외반 구속형 치환물을 준비하는 것이 수술 중 발생할 수 있는 불안정성의 해결에 도움이 될 것으로 생각된다.

Keywords

References

  1. Scott WN. Insall & Scott surgery of the knee [Internet]. 5th ed. Philadelphia: Churchill Livingstone/Elsevier; 2011 Oct [cited 2020 May 21]. Available from: https://www.elsevier.com/books/insall-and-scott-surgery-of-the-knee/scott/978-1-4377-1503-3.
  2. Morgan H, Battista V, Leopold SS. Constraint in primary total knee arthroplasty. J Am Acad Orthop Surg. 2005;13:515-24. https://doi.org/10.5435/00124635-200512000-00004
  3. Donaldson WF 3rd, Sculco TP, Insall JN, Ranawat CS. Total condylar III knee prosthesis. Long-term follow-up study. Clin Orthop Relat Res. 1988;226:21-8.
  4. McAuley JP, Engh GA. Constraint in total knee arthroplasty: when and what? J Arthroplasty. 2003;18(3 Suppl 1):51-4. https://doi.org/10.1054/arth.2003.50103
  5. McPherson EJ, Vince KG. Breakage of a Total Condylar III knee prosthesis. A case report. J Arthroplasty. 1993;8:561-3. https://doi.org/10.1016/S0883-5403(06)80223-8
  6. Puloski SK, McCalden RW, MacDonald SJ, Rorabeck CH, Bourne RB. Tibial post wear in posterior stabilized total knee arthroplasty. An unrecognized source of polyethylene debris. J Bone Joint Surg Am. 2001;83:390-7. https://doi.org/10.2106/00004623-200103000-00011
  7. Martin JR, Beahrs TR, Stuhlman CR, Trousdale RT. Complex primary total knee arthroplasty: long-term outcomes. J Bone Joint Surg Am. 2016;98:1459-70. https://doi.org/10.2106/JBJS.15.01173
  8. Maynard LM, Sauber TJ, Kostopoulos VK, Lavigne GS, Sewecke JJ, Sotereanos NG. Survival of primary condylar-constrained total knee arthroplasty at a minimum of 7 years. J Arthroplasty. 2014;29:1197-201. https://doi.org/10.1016/j.arth.2013.11.018
  9. Lachiewicz PF, Soileau ES. Ten-year survival and clinical results of constrained components in primary total knee arthroplasty. J Arthroplasty. 2006;21:803-8. https://doi.org/10.1016/j.arth.2005.09.008
  10. D'Lima DD, Patil S, Steklov N, Colwell CW Jr. An ABJS Best Paper: dynamic intraoperative ligament balancing for total knee arthroplasty. Clin Orthop Relat Res. 2007;463:208-12. https://doi.org/10.1097/blo.0b013e318150dc2c
  11. Hood RW, Vanni M, Insall JN. The correction of knee alignment in 225 consecutive total condylar knee replacements. Clin Orthop Relat Res. 1981;160:94-105.
  12. Parratte S, Pagnano MW. Instability after total knee arthroplasty. J Bone Joint Surg Am. 2008;90:184-94.
  13. Unitt L, Sambatakakis A, Johnstone D, Briggs TW. Shortterm outcome in total knee replacement after soft-tissue release and balancing. J Bone Joint Surg Br. 2008;90:159-65.
  14. Jain JK, Agarwal S, Sharma RK. Ligament reconstruction/advancement for management of instability due to ligament insufficiency during total knee arthroplasty: a viable alternative to constrained implant. J Orthop Sci. 2014;19:564-70. https://doi.org/10.1007/s00776-014-0564-9
  15. Tanzer M, Makhdom AM. Preoperative planning in primary total knee arthroplasty. J Am Acad Orthop Surg. 2016;24:220-30. https://doi.org/10.5435/JAAOS-D-14-00332
  16. Favorito PJ, Mihalko WM, Krackow KA. Total knee arthroplasty in the valgus knee. J Am Acad Orthop Surg. 2002;10:16-24. https://doi.org/10.5435/00124635-200201000-00004
  17. Ranawat AS, Ranawat CS, Elkus M, Rasquinha VJ, Rossi R, Babhulkar S. Total knee arthroplasty for severe valgus deformity. J Bone Joint Surg Am. 2005;87 Suppl 1(Pt 2):271-84.
  18. Brilhault J, Lautman S, Favard L, Burdin P. Lateral femoral sliding osteotomy lateral release in total knee arthroplasty for a fixed valgus deformity. J Bone Joint Surg Br. 2002;84:1131-7. https://doi.org/10.1302/0301-620X.84B8.0841131
  19. Conjeski JM, Scuderi GR. Lateral femoral epicondylar osteotomy for correction of fixed valgus deformity in total knee arthroplasty: a technical note. J Arthroplasty. 2018;33:386-90. https://doi.org/10.1016/j.arth.2017.09.018
  20. Li F, Liu N, Li Z, Wood KB, Tian H. Lateral femoral sliding osteotomy in total knee arthroplasty with valgus deformity greater than twenty degrees. Int Orthop. 2019;43:2511-7. https://doi.org/10.1007/s00264-019-04295-0
  21. Mullaji AB, Shetty GM. Lateral epicondylar osteotomy using computer navigation in total knee arthroplasty for rigid valgus deformities. J Arthroplasty. 2010;25:166-9. https://doi.org/10.1016/j.arth.2009.06.013
  22. Mihalko WM, Saleh KJ, Krackow KA, Whiteside LA. Soft-tissue balancing during total knee arthroplasty in the varus knee. J Am Acad Orthop Surg. 2009;17:766-74. https://doi.org/10.5435/00124635-200912000-00005
  23. Naudie DD, Rorabeck CH. Managing instability in total knee arthroplasty with constrained and linked implants. Instr Course Lect. 2004;53:207-15.
  24. Koo MH, Choi CH. Conservative treatment for the intraoperative detachment of medial collateral ligament from the tibial attachment site during primary total knee arthroplasty. J Arthroplasty. 2009;24:1249-53. https://doi.org/10.1016/j.arth.2009.06.007
  25. Conlisk N, Gray H, Pankaj P, Howie CR. The influence of stem length and fixation on initial femoral component stability in revision total knee replacement. Bone Joint Res. 2012;1:281-8. https://doi.org/10.1302/2046-3758.111.2000107
  26. Sabatini L, Risitano S, Rissolio L, Bonani A, Atzori F, Masse A. Condylar constrained system in primary total knee replacement: our experience and literature review. Ann Transl Med. 2017;5:135. https://doi.org/10.21037/atm.2017.03.29
  27. Girard J, Amzallag M, Pasquier G, et al. Total knee arthroplasty in valgus knees: predictive preoperative parameters influencing a constrained design selection. Orthop Traumatol Surg Res. 2009;95:260-6. https://doi.org/10.1016/j.otsr.2009.04.005
  28. Cholewinski P, Putman S, Vasseur L, et al. Long-term outcomes of primary constrained condylar knee arthroplasty. Orthop Traumatol Surg Res. 2015;101:449-54. https://doi.org/10.1016/j.otsr.2015.01.020