• Title/Summary/Keyword: 교통신호 제어기

Search Result 100, Processing Time 0.027 seconds

A Study on the Loop Detector System for Real-Time Traffic Adaptive Signal Control (실시간 교통신호제어를 위한 루프 검지기 체계 연구)

  • 이승환;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.59-88
    • /
    • 1996
  • This study has determined optimal type, and location of loop detector to measure accurately traffic condition influenced by traffic variation with real time. Optimal type of loop detector for through vehicle at stop bar was determined by confidences of occupancy period, and nonoccupancy period, and so appropriate detector type for application to real time traffic control system has been decided on special loop detector.

    shows types and winding methods of existing detector (num1) and special detector (num 7,8) determined. It is desired that optimal location of through loop detector should be installed within 50cm of stop bar owing to vehicle behavior. And optimal location of loop detector for left turn vehicle is determined by left turn vehicle behavior on stop bar. In the case of install only one loop, it is desirable that within 20cm of stop bar. Both the special loop (1.8 × 4.0m : num 1.7) and existing loop (1.8 × 1.8m : num1) would be suitable. A location standard aspects, while regarding as economic, existing loop (1.8 × 1.8m : num1) would be suitable. A location of the queue detector and the spillback prevention detector considering the link length, the pedestran crossing is be or not and the estimation range of queue. And if the link length is shorter than 250m, locations of queue detector and spillback protect detector must be considered in the respect of queue management.

  • PDF

Optimal Phase of Traffic Signal Controller for Crossroad (사거리에서 교통 신호 제어기의 Optimal Phase)

  • Kang, Minsung;Kye, Youngwoo;Jang, Hakyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.119-121
    • /
    • 2022
  • In this paper, we will make a model that finds optimal phase for each crossroad. When the traffic volume, traffic capacity, and the lane width of every direction is given for each crossroad, we aim to find the most efficient phase. We established an evaluation function that evaluates the efficiency of each phase using the values of the average waiting time in one direction, the average delay time, the standard deviation of the delay time, and the average delay time in each direction. The time allocation to optimize a phase pattern can be obtained by using the gradient decent method. Through this research, we hope to decrease the waiting time in transporation, thus improving the overall traffic condition in cities.

  • PDF

Algorithm for Bus Priority Signals based on Urban Traffic Information System(UTIS) (도시교통정보시스템(UTIS) 기반 버스우선신호 알고리즘 개발)

  • Lee, Bong-Keun;Lee, Choul-Ki;Yun, Il-Soo;Kim, Young-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.2
    • /
    • pp.21-28
    • /
    • 2012
  • The continuous deployment of Urban Traffic Information System (UTIS) in Korea has increased the need for developing more practical applications utilizing the standard functions of UTIS facilities installed on urban arterials beyond its basic applications like gathering traffic data and providing traffic information. The UTIS-based bus signal priority may be one of UTIS-based applications meeting such demands. However, the studies on BSP have not been sufficient for actual field deployment in terms of theories and algorithms so that there have been few actual installations on real urban arterials. Thus, this study was aimed at developing a UTIS-based bus priority signal system and evaluating its effectiveness through a field study. To this end, this study presents the system development processes by dividing the UTIS-based bus priority signal system into hardware and software. In addition, the positive effectiveness of the UTIS-based bus priority signal system was verified through a field application test which was conducted at Gyeonggi Global Trade High School intersection.

On the Introduction of the Internal Metering Policy in COSMOS (서울시 실시간 신호제어시스템(COSMOS)내 내부미터링 제어전략 도입 방안)

  • 이승환;이상수;이성호
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.4
    • /
    • pp.79-90
    • /
    • 2003
  • Internal metering policy(IMP) is a control strategy to improve the quality of traffic flow within a network by avoiding queue spillback or intersection blockage. It is a more aggressive control strategy than the current control strategy employed in COSMOS. A preliminary study was made to incorporate the IMP logic within the COSMOS system to improve its' functionality at oversaturated conditions. From the study results, a set of guideline for real implementation was recommended : traffic conditions, detector configurations, and control procedures, etc. A simulation study was performed to evaluate the effectiveness of the proposed guidelines. It was shown that the occurrence of queue spillback was minimized. and overall network performance was also improved by applying IMP logic as compared to COSMOS control onl.

A Study on Developing the TCP/IP Application Communication Protocol for the Standard Traffic Signal Controller (표준규격 교통신호제어기에서 TCP/IP 통신프로토콜 제정방안 연구)

  • Han, Won-Sub;Hyun, Cheol-Seung;Lee, Ho-Won;Joo, Doo-Hwan;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.5
    • /
    • pp.71-84
    • /
    • 2009
  • The communication between the center system and the local controller in the Traffic Signal Controller Specification has been specified by a communication line for the exclusive use and the analog modem serial protocol. Therefore, it can't be adapted in the ITS communication network of the TCP/IP protocol being constructed in the local city. The international and domestic ITS device's communication specification has adapted the DATEX-ASN data exchange technique based on the ethernet communication network. So, this study was performed by the purpose of developing the application communication protocol's standard draft based on the TCP/IP communication protocol for the traffic signal controller, to be able to constitute the traffic signal control system in the ITS communication network. The communication format for 23 items of control, status, and database request etc. which are specified in the standard traffic signal controller was developed by appling the DATEX-ASN data interface procedure and structure which are KS ISO X 14827 Part1, 2, ISO/ DIS 15784 Part-3. To test the developed protocol, the application program for the communication items was developed and according to the test result, the encoding and the decoding transection for all communication items was possible.

  • PDF

Development of Algorithms for Four-quadrant Gate System and Obstacle Detection Systems at Crossings (철도건널목 지장물·진입위반차량 검지시스템 및 4분할 차단 알고리즘 개발)

  • Oh, Ju-Taek;Cho, Han-Seon;Lee, Jae-Myung;Shim, Kyu-Don
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.367-374
    • /
    • 2006
  • This research revealed the operation problems of the current crossing control systems through inspecting and testing the obstacle detection systems and gate control systems for the crossings. To resolve the problems of the crossing control systems, this research developed new algorithms of four-quadrant gate system and obstacle detection systems combing the functions of rasar sensors and magnetic sensors and tested the reliability of the systems. Currently, the obstacle detection systems and gate control systems controls approaching and departing traffic by simply detecting vehicles and obstacles but do not consider traffic movements at the crossings. In addition, they do not make signal cooperation for gate controls. As a result, such inefficient crossing controls result in unsafe gate controls for drivers. Therefore, the newly developed crossing control systems through this study will provide more effective crossing control services with more strengthen information cooperation within control systems. Besides they will help to reduce train crashes at the crossings by gate control systems considering various driving behaviors.

Preliminary Study on Actuated Signal Control at Rural Area of Cheon-an City (천안시 외곽지역의 감응식 신호운영을 위한 기초연구)

  • Park, Soon-Yong;Kim, Dong-Nyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.52-63
    • /
    • 2009
  • Recently in Korea, in the case of metropolis, the urban signalized intersections are controlled by traffic information center or ITS center. Cheon-an City also established traffic information center through the 1st.-$\sim$3rd. ITS public construction and has managed this center that includes bus information service, traffic information collection and providing service, parking information service, and traffic responsive control system. In the Cheon-an metropolitan traffic signal operation, traffic signal controllers were grouped by the each main traffic flow axes and performed with coordinated signal timing for the signalized arterials, and also cycle and split changed by realtime traffic demands. Cheon-an urban traffic responsive control system was evaluated by intersection delay and speed, then it was verified that the delay decreased and vehicle speed improved. However, the rural signal control system to connect adjacency town was evaluated to have lower status than urban area due to the unimproved TOD (Time of day) plan. Therefore actuated signal control was examined for substitutive control system in isolated signal intersection. The aim of this article is to compare actuated signal control with TOD mode in the rural intersection of Cheon-an and to fine superiority of these two control mode, with evaluation of vehicle delay by using HCM(2000) method and by micro-simulation CORSlM. The result of field test show that actuated signal control gave better performance in delay comparison than the existing TOD signal control. And simulation outcome verified that non-optimized TOD has higher delay than optimized TOD mode, non-optimal actuated mode, and optimal actuated signal control mode. Particularly, these three modes delays had not different values according to the paired sample t-test. This is because small traffic demands were loaded in each links. This suggested actuated signal control is expected to be more effective than TOD mode in some rural isolated intersections which frequently need to survey for traffic volume.

  • PDF

LED PANNEL with Automobile Signal Controller and Advertising Board used to Local area Network (LED PANNEL을 사용하여 근거리 무선 통신망을 연결한 자동차 신호 제어기 및 광고판)

  • Park, Jin Ki;kim, young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.533-535
    • /
    • 2018
  • In the 21st century, in which the accident rate is rapidly increasing in proportion to the development of automobiles, In order to reduce the number of accidents, this paper was written for the convenience of the elderly people with disabilities and the handicapped. When a driver's safety accidents and various signals are transmitted through a smart phone by voice, the voice signal is processed as a video signal through the rear LED pannel of the vehicle, so that an urgent situation or a current state can be clarified It is also possible to use the local area network as a billboard and I would like to propose a study to show the advertising effect and current traffic situation.

  • PDF

Influence of Disturbances in Optimal Period Establishment for the Rapid Traffic Signal Control (신속교통신호제어를 위한 그 최적주기에 있어서의 외란의 영향)

  • 양흥석;김호윤
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.5
    • /
    • pp.16-20
    • /
    • 1973
  • The most important thing in locating disturbances in optimal rapid traffic singnal control is to collect information cocerning toraffit flow by means of a detection method. In order to set up an optimal traffic singnal period, the analysis of a delay time phenomena in the signal period must also be considered. In fact, each of the distributed traffic quantities on the road are not similar factors in view of speeds and distances of succeeding cars. The causing factors are analyzed by the method of control engineering analysis, and they are coincident with disturbance. Thus distubances cause errors. Distubances are fuctions of time, and are classified into three conditions: Natural road state and weather are the first. The second is structures and function of vehicles, and the third is inducedbydrivers. This thesis deals with the last two cases except the first one for maximum utilization of the existing road state and weather conditions. The first condition remains constant, and then there exist some relations between vehicles and drivers. In the long run, it can be shown that the scheme for minimizing whole errors in the optimal traffic signal time setting is definitely presented.

  • PDF

Development of The Signal Control Algorithm Using Travel Time Informations of Sectional Detection Systems (구간검지체계의 통행시간정보를 이용한 신호제어 알고리즘 개발)

  • Jung, Young-Je;Kim, Young-Chan;Baek, Hyon-Su
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.181-191
    • /
    • 2005
  • This study developed an algorithm for real-time signal control based on the detection system that can collect sectional travel time. The signal control variable is maximum queue length per cycle and this variable has a sectional meaning. When a individual vehicle pass through the detector, we can gather the vehicle ID and the detected time. Therefor we can compute the travel time of an individual vehicle between consecutive detectors. This travel time informations were bisected including the delay and not. We can compute queue withdrawing time using this bisection and the max queue length is computed using the deterministic delay model. The objective function of the real-time signal control aims equalization of queue length for all direction. The distribution of the cycle is made by queue length ratios.