• Title/Summary/Keyword: 광 부품

Search Result 273, Processing Time 0.025 seconds

DEVELOPMENT OF CCD IMAGING SYSTEM USING THERMOELECTRIC COOLING METHOD (열전 냉각방식을 이용한 극미광 영상장비 개발)

  • Park, Young-Sik;Lee, Chung-Woo;Jin, Ho;Han, Won-Yong;Nam, Uk-Won;Lee, Yong-Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2000
  • We developed low light CCD imaging system using thermoelectric cooling method collaboration with a company to design a commercial model. It consists of Kodak KAF-0401E(768$\times$512 pixels) CCD chip, thermoelectric module manufactured by Thermotek. This TEC system can reach an operative temperature of $-25^{\circ}C$. We employed an Uniblitz VS25s shutter and it has capability a minimum exposure time 80ms. The system components are an interface card using a Korea Astronomy Observatory (hereafter KAO) ISA bus controller, image acquisition with AD9816 chip, that is 12bit video processor. The performance test with this imaging system showed good operation within the initial specification of our design. It shows a dark current less than 0.4e-/pixel/sec at a temperature of $-10^{\circ}C$, a linearity 99.9$\pm$0.1%, gain 4.24e-/adu, and system noise is 25.3e-(rms). For low temperature CCD operation, we designed a TEC, which uses a one-stage peltier module and forced air heat exchanger. This TEC imaging system enables accurate photometry($\pm$0.01mag) even though the CCD is not at 'conventional' cryogenic temperatures(140k). The system can be a useful instrument for any other imaging applications. Finally, with this system, we obtained several images of astronomical objects for system performance tests.

  • PDF

Three-dimensional micro photomachining of polymer using DPSSL (Diode Pumped Solid State Laser) with 355 nm wavelength (355nm 파장의 DPSSL을 이용한 폴리머의 3차원 미세 형상 광가공기술)

  • 장원석;신보성;김재구;황경현
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.312-320
    • /
    • 2003
  • The basic mechanistic aspects of the interaction and practical considerations related to polymer ablation were briefly reviewed. Photochemical and photothermal effects, which highly depend on laser wavelength have close correlation with each other. In this study, multi-scanning laser ablation processing of polymer with a DPSS (Diode Pumped Solid State) 3rd harmonic Nd:YVO$_4$ laser (355 nm) was developed to fabricate a three-dimensional micro shape. Polymer fabrication using DPSSL has some advantages compared with the conventional polymer ablation process using KrF and ArF laser with 248 nm and 193 nm wavelength. These advantages include pumping efficiency and low maintenance cost. And this method also makes it possible to fabricate 2D patterns or 3D shapes rapidly and cheaply because CAD/CAM software and precision stages are used without complex projection mask techniques. Photomachinability of polymer is highly influenced by laser wavelength and by the polymer's own chemical structure. So the optical characteristics of polymers for a 355 nm laser source is investigated experimentally and theoretically. The photophysical and photochemical parameters such as laser fluence, focusing position, and ambient gas were considered to reduce the plume effect which re-deposits debris on the surface of substrate. These phenomena affect the surface roughness and even induce delamination around the ablation site. Thus, the process parameters were tuned to optimize for gaining precision surface shape and quality. This maskless direct photomachining technology using DPSSL could be expected to manufacture tile prototype of micro devices and molds for the laser-LIGA process.

Development of Fiber-end-cap Fabrication Equipment (대구경 광섬유 엔드캡 제작장비 개발)

  • Lee, Sung Hun;Hwang, Soon Hwi;Kim, Tae Kyun;Yang, Whan Seok;Yoon, Yeong Gap;Kim, Seon Ju
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.2
    • /
    • pp.49-54
    • /
    • 2021
  • In this paper, we design and construct the equipment to manufacture large-diameter optical fiber end caps, which are the core parts of high-power fiber lasers, and we fabricate large-diameter optical fiber end caps using the home-made equipment. This equipment consists of a CO2 laser as a fusion-splice heat source, a precision stage assembly for transferring the position of a large-diameter optical fiber and an end cap, and a vision system used for alignment when the fusion splice is interlocked with the stage assembly. The output of the laser source is interlocked with the stage assembly to control the output, and the equipment is manufactured to align the polarization axis of the large-diameter polarization-maintaining optical fiber with the vision system. Optical fiber end caps were manufactured by laser fusion splicing of a large-diameter polarization-maintaining optical fiber with a clad diameter of 400 ㎛ and an end cap of 10×5×2 ㎣ (W×D×H) using home-made equipment. Signal-light insertion loss, polarization extinction ratio, and beam quality M2 of the fabricated large-diameter optical fiber end caps were measured to be 0.6%, 16.7 dB, and 1.21, respectively.

Conceptual Design of 6U Micro-Satellite System for Optical Images of 3 m GSD (3 m급 광학영상 촬영을 위한 6U 초소형위성 시스템 개념설계)

  • Kim, Geuk-Nam;Park, Sang-Young;Kim, Gi-hwan;Park, Seung-Han;Song, Youngbum;Song, Sung Chan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.105-114
    • /
    • 2022
  • The purpose of this study was to present a conceptual design of the 6U micro-satellite system for optical image of 3 m GSD. An optical camera system with a payload of 3 m GSD image was designed and optimized. The optical system has a diameter of Ø78 mm, length 250 mm, and 1400 mm focal length. The requirement and constraints were configured for the 6U micro-satellite bus system with the payload. Satisfying the requirement and constraints, the subsystems of the 6U bus were designed such as attitude and orbit control, propulsion, command and data handling, electrical power, communication, structures and mechanisms, and thermal control subsystem. The mass budget, power budget, and communication link budget were also confirmed for the 6U micro-satellite comprising the optical payload and the subsystems of bus. To take optical images, a mission operation concept is proposed for the 6U micro-satellite in a low-Earth orbit. A constellation comprising many 6U micro-satellites studied in this paper, can provide with various data for reconnaissance and disaster tracking.

Electrical and optical properties of Indium Zinc Tin Oxide thin films deposited by RF magnetron sputtering (RF magnetron sputtering에 의해 증착된 Indium Zinc Tin Oxide 박막의 전기적, 광학적 특성.)

  • Nam, Tae-Bang;Choi, Byung-Hyun;Ji, Mi-Jung;Seo, Han;Won, Ju-Yeon;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.96-96
    • /
    • 2009
  • 투명전도막은 FPD의 전자부품에서 전극으로 널리 사용되고 있으며 현재 대부분의 투명전도막으로는 ITO가 사용되고 있다. 하지만, ITO에 사용되는 In은 희유금속으로 지속적인 사용량 증가로 가격의 급등과 더불어 수급 불안정으로 인해 In을 대체하고자 하는 연구가 집중적으로 이루어지고 있다. 그러나 $In_2O_3$를 대체한 ZnO계 등은 비저항이 높아 대체 적용이 가능하지 못하고 있다. 이에 In의 양을 줄이면서 상대적으로 저가이면서 광학적 특성이 우수한 ZnO을 첨가하여 기존의 ITO에 상응하는 전기전도도와 광투과율을 얻을 수 있는 새로운 3성분계 TCO 에 대한 연구가 활발히 이루어지고 있다. 따라서, 본 연구그룹은 $In_2O_3$을 기본 조성으로 하는 $In_2O_3-ZnO-SnO_2$계를 선정하여 IZTO target을 제조 후 RF magnetron sputtering 방법으로 투명전도막을 제작하였다. 본 연구에서는 RF 파워와 동작압력, 동작시간 그리고 열처리온도의 증착 조건에 따른 IZTO 박막의 특성을 평가하였다. 박막의 특성 및 표면 미세구조를 관찰하기 위해 AFM(Atomic Force Microscope)을 이용하였으며, XRD(X-ray diffraction)을 이용하여 결정성을 분석하였고, 4 point-prove, Hall effect measurement와 UV/Visible spectrometer를 통해 전기적, 광학적 특성을 평가하였다.

  • PDF

A Study on the Development of a Low-cost Device for Measuring the Optical Smoke Density (광학적 연기밀도 측정을 위한 저가형 장치의 개발에 관한 연구)

  • Kim, Bong-Jun;Cho, Jae-Ho;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.81-88
    • /
    • 2015
  • A low-cost device using the light-extinction method was developed to measure the optical smoke density in various fire experiments in the present study. The relative measurement accuracy of low-cost device was evaluated through the comparison of optical density measured by a high-cost standard device consisting of He-Ne laser, photo detector and various optical components. The low-cost device was composed of laser module, photocell and acrylic board. From the experiments using a smoke generator can be easily adjusted the smoke concentration, it was found that the low-cost device could measure the smoke density within the range of ${\pm}10%$, compared to the standard device. In addition, the reliability of low-cost device was also confirmed in the experiment using a polyethylene flame. Finally, it is expected that the low-cost device developed with real-time measurement and simple installation for measuring the smoke density will be used instead of the high-cost standard device.

Point-diffraction interferometer for 3-D profile measurement of light scattering rough surfaces (광산란 거친표면의 고정밀 삼차원 형상 측정을 위한 점회절 간섭계)

  • 김병창;이호재;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.5
    • /
    • pp.504-508
    • /
    • 2003
  • We present a new point-diffraction interferometer, which has been devised for the three-dimensional profile measurement of light scattering rough surfaces. The interferometer system has multiple sources of two-point-diffraction and a CCD camera composed of an array of two-dimensional photodetectors. Each diffraction source is an independent two-point-diffraction interferometer made of a pair of single-mode optical fibers, which are housed in a ceramic ferrule to emit two spherical wave fronts by means of diffraction at their free ends. The two spherical wave fronts then interfere with each other and subsequently generate a unique fringe pattern on the test surface. A He-Ne source provides coherent light to the two fibers through a 2${\times}$l optical coupler, and one of the fibers is elongated by use of a piezoelectric tube to produce phase shifting. The xyz coordinates of the target surface are determined by fitting the measured phase data into a global model of multilateration. Measurement has been performed for the warpage inspection of chip scale packages (CSPs) that are tape-mounted on ball grid arrays (BGAs) and backside profile of a silicon wafer in the middle of integrated-circuit fabrication process. When a diagonal profile is measured across the wafer, the maximum discrepancy turns out to be 5.6 ${\mu}{\textrm}{m}$ with a standard deviation of 1.5 ${\mu}{\textrm}{m}$.

Optimum Design of Ring Light for Medical Purpose using High Brightness LED (고휘도 LED 를 이용한 의료용 링 라이트의 최적 설계)

  • Cheon, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.757-758
    • /
    • 2010
  • At the time of medical treatment and surgical operation, halogen lamp and plasma lamp were mainly used as luminous source for lighting. These two luminous sources have drawbacks that the life of lamps are not long, various problems are brought about due to excessive heat generation and its volume is very big because of cooling device. Accordingly, in this research a ring light was developed so that a partial shadowless shooting for the patient's affected area at the medical treatment room and surgical operation room using high luminance LED for which attention is being paid as new lighting parts for medical purpose. LED which was applied to the development used high luminance three color LED for full color for which various color materialization and the adjustment of radiation intensity are possible and we can get white light in order to emphasize the delicate expression for generic tone of shooting object, strong highlight, simple shadow and three dimensional effect at the time of close-up shadowless shooting of the affected area.

  • PDF

Fatigue Life Analysis for Solder Joint of Optical Thin Film Filter Device (다층 박막 광학 필터 디바이스의 패키징시 솔더 조인트의 피로파괴 수명 해석)

  • 김명진;이형만
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.19-26
    • /
    • 2003
  • Plastic and creep deformations of a solder joint on thermal cycle play an important role in the reliability of optical telecommunication components. Solder joint strain is increased with the thermal cycle time and it causes mis-alignments and power loss in the optical component. Furthermore, the component can be failed since the deformation exceed the limitation of the fatigue life. We applied the finite element analysis method to solve the problem of the solder joint reliability on thermal cycle. Plastic and creep deformations are calculated by the finite element method. And, the fatigue lire is predicted by using creep-fatigue prediction models with calculated strains. The temperature conditon of the analysis was referred from the Telcordia reliability schedule (-40 to 75). Also, the three ramp renditions, 1/min, 10/min and 50/min, and dwelling time were considered to analyze the differences of results.

  • PDF

Modeling and Analysis of DC Based Buildong Power Structure (직류기반 소용량 건물 전력계 모델링 및 해석)

  • Baek, Jong-Bok;Seo, Gab-Su;Park, Chul-Woo;Bae, Hyun-Su;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.238-239
    • /
    • 2010
  • 주거 상업용 건물에 있어 최근 TV, LED 조명, 컴퓨터, IT 기기들과 같은 직류를 사용하는 부하가 점차 증가함에 따라 기존의 교류 배전 기반의 건물 전력구조에서 에너지절감을 위한 하나의 방안으로 직류기반의 건물 배전구조에 대한 도입에 대한 연구가 활발히 이뤄지고 있다. 또한 직류 형태의 전원인 태양광 발전, 연료전지 등의 신재생 에너지와 가정 및 전기자동차용 배터리의 등장은 직류 기반 전력구조가 가지는 강점을 더욱 부각시키고 있다. 직류 배전 시스템은 기존 교류 배전에서 직류부하를 위한 다중의 전력 변환 과정을 최소화함으로서 전원 및 부하에서 소모되는 에너지를 절감하여 전력시장 내 전체적인 탄소배출량 저감에 기여할 수 있을 것으로 고려되어지고 있다. 이는 직류배전 시스템의 에너지 저감 효용성 이외 기존 교류배전 대비 부하단 부품 수의 감소에 따른 신뢰성 향상 및 가격 저감, 무효전력 고려사항의 제거 등 많은 장점을 가지기 때문이다. 본 논문에서는 소용량 건물에 직류배전 구조가 도입될 경우 실현 가능성이 높은 대표적 직류 배전 구조들을 Functional Modeling 기법을 통해 모델링하며, 시뮬레이션을 통해 기존의 교류 배전 건물과 함께 각각의 전력계 구조에 대한 효율 및 장단점들을 정성적으로 비교하고, 구현에 필요한 고려사항들을 제시한다.

  • PDF