DOI QR코드

DOI QR Code

Development of Fiber-end-cap Fabrication Equipment

대구경 광섬유 엔드캡 제작장비 개발

  • Received : 2021.01.28
  • Accepted : 2021.02.17
  • Published : 2021.04.25

Abstract

In this paper, we design and construct the equipment to manufacture large-diameter optical fiber end caps, which are the core parts of high-power fiber lasers, and we fabricate large-diameter optical fiber end caps using the home-made equipment. This equipment consists of a CO2 laser as a fusion-splice heat source, a precision stage assembly for transferring the position of a large-diameter optical fiber and an end cap, and a vision system used for alignment when the fusion splice is interlocked with the stage assembly. The output of the laser source is interlocked with the stage assembly to control the output, and the equipment is manufactured to align the polarization axis of the large-diameter polarization-maintaining optical fiber with the vision system. Optical fiber end caps were manufactured by laser fusion splicing of a large-diameter polarization-maintaining optical fiber with a clad diameter of 400 ㎛ and an end cap of 10×5×2 ㎣ (W×D×H) using home-made equipment. Signal-light insertion loss, polarization extinction ratio, and beam quality M2 of the fabricated large-diameter optical fiber end caps were measured to be 0.6%, 16.7 dB, and 1.21, respectively.

본 논문에서는 고출력 광섬유 레이저의 핵심 부품인 대구경 광섬유 엔드캡을 제작하는 장비를 설계 및 제작하였으며, 제작장비를 이용하여 대구경 광섬유 엔드캡을 제작하였다. 대구경 광섬유 엔드캡 제작장비는 레이저 광을 조사하여 접속 열원으로 사용하기 위한 CO2 레이저 광원부, 대구경 광섬유와 엔드캡의 위치를 이송하기 위한 정밀 스테이지 조립체, 스테이지 조립체와 연동되어 융착 시 정렬에 사용되는 비전 시스템으로 구성되어 있다. 레이저 광원의 출력은 스테이지 조립체와 연동되어 출력을 제어하며, 비전 시스템으로 대구경 편광유지 광섬유의 편광축을 정렬할 수 있도록 제작되었다. 자체 제작한 장비를 이용하여 클래드 직경이 400 ㎛인 대구경 편광유지 광섬유와 10(W)×5(D)×2(H) ㎣의 엔드캡을 레이저 융착하여 대구경 광섬유 엔드캡을 제작하였다. 제작된 대구경 광섬유 엔드캡의 신호광 삽입손실, 소광률 및 빔품질(M2)은 각각 0.6%, 16.7 dB, M2x=1.21, M2y=1.22로 측정되었다.

Keywords

References

  1. E. A. Shcherbakov, V. V. Fomin, A. A. Abramov, A. A. Ferin, D. V. Mochalov, and V. P. Gapontsev, "Industrial grade 100 kW power CW fiber laser," in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), paper ATh4A.2.
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010). https://doi.org/10.1364/JOSAB.27.000B63
  3. F. Stutzki, F. Jansen, T. Eidan, A. Steinmetz, C. Jauregui, J. Limpert, and A. Tunnermann, "High average power large-pitch fiber amplifier with robust single-mode operation," Opt. Lett. 36, 689-691 (2011). https://doi.org/10.1364/OL.36.000689
  4. I. Dajani, A. Flores, R. Holten, B. Anderson, B. Pulford, and T. Ehrenreich, "Multi-kilowatt power scaling and coherent beam combining of narrow-linewidth fiber lasers," Proc. SPIE 9728, 972801 (2016). https://doi.org/10.1117/12.2218216
  5. N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, "Kilowatt-level narrow-linewidth monolithic fiber amplifier based on laser gain competition," Proc. SPIE 9728, 972804 (2016). https://doi.org/10.1117/12.2211815
  6. F. Chen, J. Ma, C. Wei, R. Zhu, W. Zhou, Q. Yuan, S. Pan, J. Y. Zhang, Y. Wen, and J. Dou, "10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters," Opt. Express 25, 32783-32791 (2017). https://doi.org/10.1364/OE.25.032783
  7. Y. H. Park, Y. S. Youn, M. W. Jung, C. Jun, B.-A. Yu, and W. Shin, "Polarization-maintained single-mode 400 W Yb-doped fiber laser with 2.5 GHz linewidth from a 3-stage MOPA system," Korean J. Opt. Photon. 29, 159-165 (2018). https://doi.org/10.3807/KJOP.2018.29.4.159
  8. A. Wetter, M. Faucher, B. Sevigny, and N. Vachon, "High core and cladding isolation termination for high-power lasers and amplifiers," Proc. SPIE 7195, 719521 (2009). https://doi.org/10.1117/12.806923
  9. A. Carter, B. N. Samson, K. Tankala, D. P. Machewirth, V. Khitrov, U. H. Manyam, F. Gonthier, and F. Seguin, "Damage mechanisms in components for fibre lasers and amplifiers," Proc. SPIE 5647, 2004 (2005).
  10. M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.- N. Maran, "Thermal effects in high- power CW fiber laser," Proc. SPIE 7195, 71951U (2009). https://doi.org/10.1117/12.809021
  11. K. Kinoshita and K. Egashira, "Optical fiber end preparation using a CO2 laser," Appl. Opt. 17, 1210-1212 (1978). https://doi.org/10.1364/AO.17.001210
  12. A. D. McLachlan and F. P. Meyer, "Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths," Appl. Opt. 26, 1728-1731 (1987). https://doi.org/10.1364/AO.26.001728
  13. S. Boehme, E. Beckert, R. Eberhardt, and A. Tuennermann, "Laser splicing of end caps: process requirements in high power laser applications," Proc. SPIE 7202, 720205 (2009). https://doi.org/10.1117/12.808161
  14. Fused silica data association, "HPFS® Fused Silica ArF Grad," (Mechanical & Thermal Properties, published date: 2003), https://www.corning.com/media/worldwide/csm/documents/dce54136a5544273ba03bb27111c75552.pdf (Accessed date: June 2017).