• Title/Summary/Keyword: 광합성효율

Search Result 268, Processing Time 0.041 seconds

Development of Photosynthesis Efficiency Model in the Closed Plant Production System (폐쇄형 식물 생산시스템내의 광합성효율 모델 개발)

  • 김기성;김문기
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2002.11a
    • /
    • pp.293-297
    • /
    • 2002
  • 폐쇄형 식물 생산 시스템에서 생산되는 식물은 생장속도가 빠르기 때문에 생장속도를 제어하거나 예측할 수 없어 수확적기를 놓치면 품질이 현저히 떨어져 상품성이 저하된다. 이를 해결하기 위해서는 식물생장기간 동안 식물에 따라 적절한 생장환경을 조성하여 생장정도를 균일하게 할 수 있는 최적 환경제어가 필요하다. 본 연구에서는 폐쇄형 식물 생산시스템의 최적 환경제어를 위하여 엽록소형광분석법을 이용하여 상추를 중심으로 광합성효율 모델(photosynthesis efficiency model ; PEM)을 개발하였다. (중략)

  • PDF

Physiological Responses of Bupleurum latissimum Nakai, Endangered Plants to Changes in Light Environment (광환경조절에 따른 멸종위기식물 섬시호의 생리적 반응)

  • Lee, Kyeong-Cheol;Wang, Myeong-Hyeon;Song, Jae Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2013
  • This study was conducted to investigate the physiological responses of Bupleurum latissimum, endangered plants by light condition. We investigated photosynthetic parameters, chlorophyll contents and chlorophyll fluorescence under different shading treatments (Shaded 50%, 70%, 90% and non-treated). Results showed that net apparent quantum yield (AQY) and chlorophyll contents were significantly increased with elevating shading level. However, light compensation point (LCP) and dark respiration ($R_d$) were shown the opposite trend. Especially, non-treated exhibited photoinhibition such as reduction of chlorophyll contents and maximum photosynthesis rate ($Pn_{max}$) also variation trend of stomatal conductance ($g_s$), and transpiration rate (E) were decreased to prevent water loss. Photosynthetic rate ($P_{Nmax}$) and photochemical efficiency (Fv/Fm) of 90% treatment showed a drastic reduction in July. This implies that photosynthetic activity will be sharply decreased with a long period of low light intensity. The 50% treatment showed relatively higher photosynthetic activity than other treated. This result suggested that growth and physiology of B. latissimum adapted to 50% of full sunlight.

Optimization of Growth Environment in the Enclosed Plant Production System Using Photosynthesis Efficiency Model (광합성효율 모델을 이용한 밀폐형 식물 생산시스템의 재배환경 최적화)

  • Kim Keesung;Kim Moon Ki;Nam Sang Woon
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.209-216
    • /
    • 2004
  • This study was aimed to assess the effects of microclimate factors on lettuce chlorophyll fluorescent responses and to develop an environment control system for plant growth by adopting a simple genetic algorithm. The photosynthetic responses measurements were repeated by changing one factor among six climatic factors at a time. The maximum Fv'/Fm' resulted when the ambient temperature was $21^{\circ}C,\;CO_2$ concentration range of 1,200 to 1,400 ppm, relative humidity of $68\%$, air current speed of $1.4m{\cdot}s^{-1}$, and the temperature of nutrient solution of $20^{\circ}C$. In PPF greater than $140{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, Fv'/Fm' values were decreased. To estimate the effects of combined microclimate factors on plant growth, a photosynthesis efficiency model was developed using principle component analysis for six microclimate factors. Predicted Fv'/Fm' values showed a good agreement to measured ones with an average error of $2.5\%$. In this study, a simple genetic algorithm was applied to the photosynthesis efficiency model for optimal environmental condition for lettuce growth. Air emperature of $22^{\circ}C$, root zone temperature of $19^{\circ}C,\;CO_2$ concentration of 1,400 ppm, air current speed of $1.0m{\cdot}s^{-1}$, PPF of $430{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and relative humidity of $65\%$ were obtained. It is feasible to control plant environment optimally in response to microclimate changes by using photosynthesis efficiency model combined with genetic algorithm.

Physiological Responses of Cirsium setidens and Pleurospermum camtschaticum under Different Shading Treatments (피음처리에 따른 고려엉겅퀴와 누룩치의 생리반응)

  • Lee, Kyeong-Cheol;Noh, Hee-Sun;Kim, Jongh-Wan;Han, Sang-Sup
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.153-161
    • /
    • 2012
  • This study was conducted to investigate the chlorophyll contents, photosynthetic characteristics and chlorophyll fluorescence of Cirsium setidens and Pleurospermum camtschaticum by shading treatment. Two species were grown under non-treated (full sunlight) and three different shading condition (88~93%, 65~75% and 45%~55% of full sunlight) for the experiment. Total chlorophyll content, photochemical efficiency (Fv/Fm), specific leaf area (SLA), and net apparent quantum yield were increased with elevating shading level but decreased dark respiration under the low light intensity. Therefore, light absorption and light utilization efficiency were improved under the low light intensity. 45~55% of full sunlight in C. setidens and 65~75% of full sunlight in P. camtschaticum showed best maximum photosynthetic rate, net apparent quantum yield and photochemical efficiency. On the other hand, non-treated showed lower maximum photosynthetic rate, photochemical efficiency, and chlorophyll content than treated ones. These results suggest that growth of P. camtschaticum adapted to 65~75% of full sunlight and C. setidens adapted to 45~55% of full sunlight.

Photosynthetic Characteristics and Primary Production by Phytoplankton with Different Water Quality of Influent in Open Waters of Constructed Wetlands for Water Treatment (수질정화용 인공습지 개방수역에서 유입수질에 따른 식물플랑크톤의 광합성특성 및 유기물생산력)

  • Choi, Kwang-Soon;Hwang, Gil-Son;Kim, Dong-Sub;Kim, Sea-Won;Kim, Ho-Joon;Joh, Seong-Ju;Park, Je-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.61-71
    • /
    • 2007
  • The photosynthetic characteristics and primary production by phytoplankton in open waters of two wetlands (the Banwol and the Donghwa wetland) of Sihwa Constructed Wetland with different water chemistry were investigated to provide the information for the wetland management considering the water treatment efficiency. During the study period (from March to October, 2005) the primary productivity in open waters ranged from 481 to 11,275 mgC $m^{-2}$ $day^{-1}$, which is very high compared with the eutrophic level of 600mgC $m^{-2}$ $day^{-1}$. From the analysis of the photosynthesis-irradiance (P-I) model parameters, the photosynthetic characteristics may be affected by different concentration and ratio of nutrient (N and P) between two wetlands. Assimilation number (AN) was higher in the Donghwa wetland (average AN: 8.5gC $gChl^{-1}$ $hr^{-1}$) with high P and low N/P ratio than the Banwol wetland (average AN: 5.8gC $gChl^{-1}$ $hr^{-1}$) with high N and high N/P ratio. This result indicates that AN may be concerned with phosphorus than nitrogen and low NIP ratio. Positive correlation (R=0.81) was observed between the initial slope and AN, implying that AN was high in case of phytoplankton having more active photosynthesis ability under low light. On the other hand, maximum photosynthesis (Pmax) was related positively with chlorophyll a concentration showing correlation coefficient of 0.47. In this study, considering the high primary production through phytoplankton photosynthesis in open waters of Sihwa Constructed Wetland, the produced organic matter by phytoplankton may affect the water quality within wetland and its efficiency of water treatment. Also, the photosynthetic characteristics may be affected by different nutrient enrichment (especially phosphorus) of wetlands. This study suggests that the production by phytoplankton and its characteristics in open water of constructed wetland for water treatment should be considered to improve the removal efficiency of organic matter.

Effect of Irrigation on Growth Characteristics of Herb Plants on a Green Rooftop Area (옥상녹화지에서 허브식물의 관수처리에 따른 생육특성)

  • Kim, Dong-Yeob;Park, Hi-Ryung;Ha, Yoo-Mi;Ryu, Kyung-Sun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.1
    • /
    • pp.96-105
    • /
    • 2018
  • This study examined the growth of herb plants in response to irrigation on a green rooftop area in order to select herb plants that can be used for rooftop greening. Apple Mint (Mentha suaveolens), Lemon balm (Melissa officinalis), Spearmint (Mentha spicata), Pineapple sage (Salvia elegans), Choco Mint (Mentha ${\times}$ piperita 'Choco Mint'), Ox-eye Daisy (Chrysanthemum leucanthemum), Roman Chamomile (Anthemis nobilis) and Thyme (Thymus vulgaris) showed increased growth when irrigated. Conversely, Lavender (Lavendula angustifolia ), Peppermint (Mentha ${\times}$ piperita ), Vicks Plant (Plectranthus tomentosa), Feverfew (Tanacetum parthenium), Rosemary (Rosmarinus officinalis), Tansy (Tanacetum vulgare), Lemon Verbena (Aloysia triphylla), Heliotrope (Heliotropium arborescens), Soapwort (Saponaria officinalis) and Lady's mantle (Alchemilla vulgaris) demonstrated satisfactory growth regardless of irrigation. Peppermint, Tansy, Lemon Verbena, Soapwort, and Lady's mantle seem to be suitable for green rooftop because of their overwintering ability and drought hardiness. Pineapple sage, Apple Mint and Thyme would seem to be inappropriate for rooftop greening because they showed negative growth response to drought and failed overwintering. Although Spearmint, Lemon balm, Choco Mint, Ox-eye Daisy and Roman Chamomile had reduced growth during dry conditions, they were able to overwinter satisfactorily and can be used as rooftop plants with irrigation.

Photosynthetic Response of Foliage Plants Related to Light Intensity, $CO_2$ Concentration, and Growing Medium for the Improvement of Indoor Environment (실내 환경 개선을 위한 광도, 이산화탄소 농도 및 배지 종류에 따른 실내 관엽식물들의 광합성 반응)

  • Park, Sin-Ae;Kim, Min-Gi;Yoo, Mung-Hwa;Oh, Myung-Min;Son, Ki-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.203-209
    • /
    • 2010
  • This study was performed to investigate photosynthetic responses of 4 foliage plants in relation to light intensity, carbon dioxide concentration, and media, and to select efficient plants for the indoor environment control based on the results. Four foliage plants used in this study included Syngonium podophyllum, Schefflera arboricola cv. Hong Kong, Dieffenbachia amoena, and Dracaena deremensis cv. Warneckii Compacta. The plants cultivated in two different growth media, peatmoss and hydroball, and subjected to various light intensities (0, 30, 50, 80, 100, 200, 400, and $600\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD) and $CO_2$ levels (0, 50, 100, 200, 400, 700, 1000, and $1500\;{\mu}mol{CO_2}{\cdot}mol^{-1}$). As a result of the photosynthetic rate of foliage plants according to change of light intensity and $CO_2$ levels, Schefflera arboricola and Dieffenbachia amoena showed high apparent quantum yield, which stands for the photosynthetic rate under low light intensity, and both plants also recorded higher photosynthetic rate under high $CO_2$ concentration compared to the other two indoor plants. Dracaena deremensis showed the lowest photosynthetic rate under the low light intensity or high $CO_2$ concentration. There were inconsistent results in photosynthetic rate of foliage plants grown in peatmoss or hydroball. Higher photosynthetic rate was observed in Schefflera arboricola with peatmoss rather than hydroball as light and $CO_2$ concentration increased. However, hydroball had a positive effect on Dieffenbachia amoena in terms of photosynthetic rate. In case of Syngonium podophyllum, peatmoss induced higher photosynthetic rate according to increased light intensity, but there was no effect of media on the rate under various $CO_2$ treatements. In contrast, media did not affect to photosynthetic efficiency of Dracaena deremensis subjected to various light intensities and the rate of Dracaena deremensis with peatmoss was a little high when $CO_2$ concentration increased. In conclusion, potential plants for the indoor air pulification and environmental control were Schefflera arboricola and Dieffenbachia amoena because they showed high photosynthetic rate under typical indoor conditions, low light intensity and high $CO_2$ concentration.

Modeling of Microalgal Photosynthetic Activity Depending on Light Intensity, Light Pathlength and Cell Density (빛의 세기, 투과거리 및 세포농도에 따른 미세조류의 광합성 활성 모델링)

  • Yun, Yeong-Sang;Park, Jong-Mun
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.414-421
    • /
    • 1999
  • The influenced of light intensity, cell density, and light pathlength on photosynthetic activity of Chlorella vulgaris were investigated. Since the light respon curve varied according to reaction conditions, the parameters estimated from nonlinear regression were proved to be apparent and could not be applied to various situations. The light response model incorporating the light penetration through the microalgal suspension was developed based upon the spatial distribution of the photosynthetic activity. This model showed a good agreement with experimental data at different cell densities and light intensities. Using the model the effects of cell density and light pathlenth were simulated and some dicussions about optimization of operation conditions of photobioreactors were carried out. Concludingly, the developed model can be useful for predicting microalgal photosynthesis and for determining the optimal operating conditions.

  • PDF

Physiological Responses of the Three Deciduous Hardwood Seedlings Growing Under Different Shade Treatment Regimes (상이한 피음조건에서 자라는 3개 활엽수의 생리적 반응)

  • Kim, Gil-Nam;Cho, Min-Seok;Lee, Soo-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.36-48
    • /
    • 2010
  • This present study was conducted to investigate photosynthetic characteristics, chlorophyll fluorescence, chlorophyll contents of Betula platyphylla var. japonica, Prunus leveilleana, Magnolia sieboldii, growing under four different light intensity regimes (full sun, and 64~73%, 35~42%, 9~16% of full sun). As result, Betula platyphylla var. japonica showed outstanding photosynthetic capacity and apparent quantum yield in full sun and showed low shade tolerance. Prunus leveilleana showed good photosynthetic capacity and apparent quantum yield in 64~73% or 35~42% of full sun and showed common shade tolerance. However, Magnolia sieboldii showed good photosynthetic capacity and apparent quantum yield in 35~42% of full sun, while the lowest in full sun. Magnolia sieboldii showed the highest shade tolerance compared to the other species. As the shading level increased, the total chlorophyll contents of all species increased with significant difference.

Changes in Growth and Physiological Characteristics of Dendranthema zawadskii var. latiloba (Maxim.) Kitam. and Aster koraiensis Nakai by Shading Treatment (차광처리가 벌개미취와 구절초의 생장 및 생리적 특성에 미치는 영향)

  • Kim, Dong-Hak;Kim, Young-Eun;Kim, Sang-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.4
    • /
    • pp.1-13
    • /
    • 2022
  • This study was conducted to investigate the chlorophyll content, photosynthetic characteristics, and growth characteristics of Aster koraiensis and Dendranthema zawadskii var. latiloba according to shading treatment. A. koraiensis and D. zawadskii grew in four different shading treatment plots (0%, 50%, 75% and 95% of full sunlight) for experiments. It was found that as the shading level increased, the total chlorophyll content increased and dark respiration decreased in both A. koraiensis and D. zawadskii, indicating that A. koraiensis and D. zawadskii increase the utilization efficiency for photosynthesis under low light conditions. In addition, as the shading level increased, the net apparent quantum yield increased, resulting in the highest in the 95% shading plot, but the highest photosynthetic rate, water use efficiency, and leaf mass per area (LMA) were shown in the control group than in the shading treatments. The results showed that A. koraiensis and D. zawadskii are heliophytes showing plasticity to light, and if the light is restricted to continue to shade, it may be detrimental to growth. For healthy growth, it is considered suitable to grow A. koraiensis under full light conditions, and D. zawadskii under the light condition that blocks 0-50% of full sunlight.