DOI QR코드

DOI QR Code

Physiological Responses of Bupleurum latissimum Nakai, Endangered Plants to Changes in Light Environment

광환경조절에 따른 멸종위기식물 섬시호의 생리적 반응

  • Lee, Kyeong-Cheol (Institute of Forest Science, Kangwon National University) ;
  • Wang, Myeong-Hyeon (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Song, Jae Mo (Nature Environment Research Office of Gangwon Province)
  • 이경철 (강원대학교 산림과학연구소) ;
  • 왕명현 (강원대학교 생명공학부) ;
  • 송재모 (강원도 자연환경연구사업소)
  • Received : 2013.05.06
  • Accepted : 2013.05.29
  • Published : 2013.06.30

Abstract

This study was conducted to investigate the physiological responses of Bupleurum latissimum, endangered plants by light condition. We investigated photosynthetic parameters, chlorophyll contents and chlorophyll fluorescence under different shading treatments (Shaded 50%, 70%, 90% and non-treated). Results showed that net apparent quantum yield (AQY) and chlorophyll contents were significantly increased with elevating shading level. However, light compensation point (LCP) and dark respiration ($R_d$) were shown the opposite trend. Especially, non-treated exhibited photoinhibition such as reduction of chlorophyll contents and maximum photosynthesis rate ($Pn_{max}$) also variation trend of stomatal conductance ($g_s$), and transpiration rate (E) were decreased to prevent water loss. Photosynthetic rate ($P_{Nmax}$) and photochemical efficiency (Fv/Fm) of 90% treatment showed a drastic reduction in July. This implies that photosynthetic activity will be sharply decreased with a long period of low light intensity. The 50% treatment showed relatively higher photosynthetic activity than other treated. This result suggested that growth and physiology of B. latissimum adapted to 50% of full sunlight.

차광처리에 의한 광환경 변화가 섬시호의 생리적 반응에 미치는 영향을 조사하기 위해, 차광막을 이용하여 무차광처리구(0%), 50%, 70% 및 90% 차광처리구를 설치하고 광합성 관련 인자, 수분이용효율, 엽육세포내 $CO_2$ 농도, 엽록소 형광반응 등을 조사하였다. 차광수준이 높아짐에 따라 낮은 광도에서 광합성을 수행하기 위해 암호흡의 저하로 인한 광보상점이 감소가 나타났으며, 광합성의 효율을 높이기 위해 순양자 수율과 엽록소 함량의 증가가 나타났다. 무차광처리구에서는 강한 광에 의한 수분손실을 막기 위해 기공전도도와 기공증산속도가 감소되었고, 엽육내의 $CO_2$를 효율적으로 광합성에 활용하지 못하는 것으로 나타났다. 또한 최대 광합성속도가 감소하는 광저해현상이 나타났으며, 여기 에너지의 전자전달이 원활하지 못하여 광으로 인한 피해가 예상된다. 90% 차광처리구 역시 점진적으로 광합성속도가 감소하여 7월에 가장 낮은 최대광합성속도를 보였는데, 이는 광선요구도보다 매우 적은 광 환경에서 계속 생장함으로서 광합성 능력이 저하되는 것으로 생각할 수 있으며, 50% 차광처리구의 경우 광합성에 효율적인 광환경이 제공되어 기공전도도와 기공증산속도가 증가하였고, 광화학반응 효율이 증가하는 등 광합성 활성이 높아진 것을 알 수 있어 생육에 보다 유리한 광 조건임을 알 수 있었다.

Keywords

References

  1. Ahn, J.K., H.C. Lee, C.H. Kim, D.O. Lim, and B.Y. Sun. 2008. Phylogeny and conservation of the genus Bupleurum in northeast asia with special reference to B. latissimum, endemic to ulleung island in Korea. Kor. J. Env. Eco. 22:18- 34 (in Korean).
  2. Ahn, Y.H. and S.J. Lee. 2007. Ecological characteristics and distribution of Bupleurum latissimum in ulleung lsland. Journal of the Environmental Sciences 16:751-761 (in Korean). https://doi.org/10.5322/JES.2007.16.6.751
  3. Borkowska, B. 2002. Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and growing under drought stress. Acta Physiologiae Plantarum. 24:365-370. https://doi.org/10.1007/s11738-002-0031-7
  4. Cho, M.S., K.W. Kwon, G.N. Kim, and S.Y. Woo. 2008. Chlorophyll contents and growth performances of the five deciduous hardwood species growing under different shade treatments. Kor. J. Agr. For. Meteorol. 10:149-157 (in Korean).
  5. Choi, Y.B. and J.H. Kim. 1995. Change in needle chlorophyll fluorescence of Pinus densiflora and Pinus thunbergii treated with artificial acid rain. J. Kor. For. Soc. 84:97-102 (in Korean).
  6. Collatz, G.J., J.T. Ball, C. Grivet, and J.A. Berry. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54:107-136. https://doi.org/10.1016/0168-1923(91)90002-8
  7. Demmig, B. and O. Bjorkman. 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of $O_{2}$ evolution in leaves of higher plants. Planta. 171:171-184. https://doi.org/10.1007/BF00391092
  8. Farquhar, G.D., S. Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic $CO_{2}$ assimilation in leaves of $C_{3}$ species. Planta. 149:78-90. https://doi.org/10.1007/BF00386231
  9. Franck, N. and P. Vaast. 2009. Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels. Trees. 23:761-769. https://doi.org/10.1007/s00468-009-0318-z
  10. Heschel, M.S., K. Donohue, N. Hausmann, and J. Schmitt. 2002. Population differentiation and natural selection for water-use efficiency in impatiens capensis (Balsaminaceae). Int. J. Plant Sci. 163:907-912.
  11. Jiang, C.D., G.M. Jiang, X. Wang, L.H. Li, D.K. Biswas, and Y.G. Li. 2006. Increased photosynthetic activities and thermostability of photosystem II with leaf development of elm seedlings (Ulmus pumila) probed by the fast fluorescence rise OJIP. Environmental and Experimental Botany. 58:261-268 https://doi.org/10.1016/j.envexpbot.2005.09.007
  12. Kim, M.Y., S.K. So, H.R. Park, E.K. Seo, H.J. Kwon, and H.K. Song. 2006. Ecology of Bupleurum latissimum population. J. Korean Env. Res. and Reveg. Tech. 9:78-85 (in Korean).
  13. Kim, H.J., H.J. Cho, E.Y. Kim, M.Y. Kim, and H.B. Park. 2007. Mass propagation by in vitro culture of Bupleurum latissimum Nakai. Korean J. Plant Res. 20:367-374 (in Korean).
  14. Kim, P.G. and E.J. Lee. 2001. Ecophysiology of photosynthesis 1: effects of light intensity and intercellular $CO_{2}$ pressure on photosynthesis. Kor. J. Agr. For. Meteorol. 3:126- 133 (in Korean).
  15. Kume, A. and Y. Ino. 1993. Comparison of ecolphysiological response to heavy snow in two varieties of Acuba japonica with different areas of distribution. Ecological Reserch 8:111-121. https://doi.org/10.1007/BF02348523
  16. Kwon, K.W., G.N. Kim, and M.S. Cho, 2009. Physiology responses of the three wild vegetable under different shading treatment. J. Kor. For. Soc. 98:106-114 (in Korean).
  17. Kwon, Y.M., S.C. Ko, J.C. Kim, B.Y. Moon, M.C. Park, H.B. Park, I.H. Park, Y.S. Lee, I.H. Lee, J.S. Lee, J.B. Lee, C.H. Lee, B.U. Jeon, S.H. Jo, and J.B. Hong. 2003. Plant Physiology. Academybook. Seoul. Korea. p. 429 (in Korean).
  18. Lavorel, J. and A.L. Etienne. 1977. In vivo chlorophyll fluorescence, pp. 203-268. In: J. Barber (ed.). Primary processes of photosynthesis. Elsevier Scientific. New York. USA.
  19. Lee, K.C., H.S. Noh, J.W. Kim, and S.S. Han. 2012. Physiological responses of Cirsium setidens and Pleurospermum camtschaticum under different shading treatments. Journal of Bio-Environment Control. 21:153-161.
  20. Lim, J.H., S.Y. Woo, M.J. Kwon, J.H. Chun, and J.H. Shin. 2006. Photosynthetic capacity and water use efficiency under different temperature regimes on healty and declining Korean Fir in Mt. Halla. J. Kor. For. Soc. 95:705-710 (in Korean).
  21. Oh, S.J. and S.C. Koh. 2004. Chlorophyll fluorescence and antioxidative enzyme activity of crinum leaves exposed to natural environmental stress in winter. Korean J. Environ. Biol. 22:233-241 (in Korean).
  22. Oh, S.J., K.L. Zhin, and S.C. Koh. 2009. Characterization of Chl a fluorescence of hydrophytes under cadmium stress. Journal of the Environmental Sciences 18:1361-1368 (in Korean). https://doi.org/10.5322/JES.2009.18.12.1361
  23. Percival, G.C. and G.A. Fraser. 2001. Measurement of the salinity and freezing tolerance of Crataegus genotypes using chlorophyll fluorescence. Journal of Arboriculture. 27:233-245
  24. Sim, J.S. and S.S. Han. 2003. Ecophysiological characteristics of deciduous oak species(III) photosynthetic responses of leaves to change of light intensity. J. Kor. For. Soc. 92:208- 214 (in Korean).
  25. So, S.K., K.S. Han, M.Y. Kim, H.R. Park, E.K. Seo, Y.P. Kim, and T.H. Kim. 2008a. Pollination mechanism of Bupleurum latissimum (Apiaceae). Korean J. Pl. Taxon. 38:43-50 (in Korean).
  26. So, S.K., H.R. Park, E.K. Seo, K.S. Han, M.Y. Kim, and K.R. Park. 2008b. Numerical taxonomic analyses of Bupleurum latissimum (Apiaceae) 38:31-42 (in Korean).
  27. Sun, C.X., H. Qi, J.J. Hao, L. Miao, J. Wang, Y. Wang, M. Liu, and L.J. Chen. 2009. Single leaves photosynthetic characteristics of two insect-resistant transgenic cotton (Gossypium hirsutum L.) varieties in response to light. Photosynthetica. 47:399-408. https://doi.org/10.1007/s11099-009-0061-0
  28. Taiz, L. and E. Zeiger. 2006. Plant Physiology. 4th ed. Sinauer Associates. Sunderland. USA. p.142-147.
  29. Thach, L.B., A. Shapcott, S. Schmidt, and C. Critchley. 2007. The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. Photosynthesis Research 94:423-436. https://doi.org/10.1007/s11120-007-9207-8
  30. Werf, A., A. Kooijman, R. Welschen, and H. Lambers. 1988. Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of Carex diandra and Carex acutiformis. Physiologia Plantarum. 72:483-491. https://doi.org/10.1111/j.1399-3054.1988.tb09155.x