Photosynthetic Response of Foliage Plants Related to Light Intensity, $CO_2$ Concentration, and Growing Medium for the Improvement of Indoor Environment

실내 환경 개선을 위한 광도, 이산화탄소 농도 및 배지 종류에 따른 실내 관엽식물들의 광합성 반응

  • Park, Sin-Ae (Department of Environmental Science, Kon-Kuk University) ;
  • Kim, Min-Gi (Department of Environmental Science, Kon-Kuk University) ;
  • Yoo, Mung-Hwa (Department of Environmental Science, Kon-Kuk University) ;
  • Oh, Myung-Min (Department of Horticultural Science, Chung-Buk National University) ;
  • Son, Ki-Cheol (Department of Environmental Science, Kon-Kuk University)
  • Received : 2010.07.07
  • Accepted : 2010.09.08
  • Published : 2010.12.31

Abstract

This study was performed to investigate photosynthetic responses of 4 foliage plants in relation to light intensity, carbon dioxide concentration, and media, and to select efficient plants for the indoor environment control based on the results. Four foliage plants used in this study included Syngonium podophyllum, Schefflera arboricola cv. Hong Kong, Dieffenbachia amoena, and Dracaena deremensis cv. Warneckii Compacta. The plants cultivated in two different growth media, peatmoss and hydroball, and subjected to various light intensities (0, 30, 50, 80, 100, 200, 400, and $600\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD) and $CO_2$ levels (0, 50, 100, 200, 400, 700, 1000, and $1500\;{\mu}mol{CO_2}{\cdot}mol^{-1}$). As a result of the photosynthetic rate of foliage plants according to change of light intensity and $CO_2$ levels, Schefflera arboricola and Dieffenbachia amoena showed high apparent quantum yield, which stands for the photosynthetic rate under low light intensity, and both plants also recorded higher photosynthetic rate under high $CO_2$ concentration compared to the other two indoor plants. Dracaena deremensis showed the lowest photosynthetic rate under the low light intensity or high $CO_2$ concentration. There were inconsistent results in photosynthetic rate of foliage plants grown in peatmoss or hydroball. Higher photosynthetic rate was observed in Schefflera arboricola with peatmoss rather than hydroball as light and $CO_2$ concentration increased. However, hydroball had a positive effect on Dieffenbachia amoena in terms of photosynthetic rate. In case of Syngonium podophyllum, peatmoss induced higher photosynthetic rate according to increased light intensity, but there was no effect of media on the rate under various $CO_2$ treatements. In contrast, media did not affect to photosynthetic efficiency of Dracaena deremensis subjected to various light intensities and the rate of Dracaena deremensis with peatmoss was a little high when $CO_2$ concentration increased. In conclusion, potential plants for the indoor air pulification and environmental control were Schefflera arboricola and Dieffenbachia amoena because they showed high photosynthetic rate under typical indoor conditions, low light intensity and high $CO_2$ concentration.

연구는 관엽식물 4종을 배지종류, 광도 및 이산화탄소 농도를 달리하여 식물의 광합성 반응을 조사하고, 그 결과에 기초하여 실내환경 조절에 효율적인 식물을 선정하고자 실시하였다. 식물재료로는 싱고니움, 디펜바키아, 쉐프렐라 홍콩, 드라세나를 사용하였으며, 성분과 성질이 다른 두 배지(peatmoss, hydroball)에 각각 재배하였다. 광도는 PPFD 0, 30, 50, 80, 100, 200, 400, $600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$의 수준으로 조절하고, 이산화탄소 농도는 0, 50, 100, 200, 400, 700, 1000, $1500{\mu}mol{CO_2}{\cdot}mol^{-1}$의 수준으로 처리하였다. 광도 및 엽육내 $CO_2$ 농도변화에 따른 관엽식물의 광합성 반응을 조사한 결과, 약광에서의 광합성 능력을 나타내는 순양자수율은 쉐프렐라 홍콩과 디펜바키아에서 높게 나타났으며, 두 실내식물은 고농도의 이산화탄소 환경에서도 다른 두 식물에 비해 높은 광합성율을 기록했다. 드라세나 와네키는 두 조건 모두에서 가장 낮은 광합성 효율을 보였다. 두 배지 처리에 따라서는 각각의 관엽식물에서 엇갈린 광합성 반응이 관찰되었다. 쉐프렐라 홍콩은 피트모스 배지에서 광과 이산화탄소 증가에 따라 하이드로볼 배지에 비해 높은 광합성 속도를 보였지만, 디펜바키아는 그와는 정반대로 하이드로볼 배지에서 더욱 높은 광합성율을 기록했다. 싱고니움의 경우는 광처리에 의해서는 피트모스 배지에서 높은 광합성율을 보였지만 이산화탄소 처리에서는 배지간 차이가 없었다. 가장 낮은 광합성 효율을 보인 드라세나 와네키는 광에 의한 배지간 차이가 없었으며, 이산화탄소 증가시에는 피트모스에서 다소 높은 광합성율을 보였다. 따라서 실험한 4가지 관엽식물 중 광합성 효율이 가장 높았던 쉐프렐라 홍콩이나 하이드로볼 배지에서 높은 효율을 보인 디펜바키아가 실내 공기정화 및 실내 환경조절에 적합할 것으로 판단된다.

Keywords

References

  1. Asaumi, H., H. Nishina, H. Nakamura, Y. Masui, and Y. Hashimoto. 1995. Effect of ornamental foliage plants on visual fatigue caused by visual display terminal operation. J. SHITAI 7:138-143.
  2. Asaumi, H., H. Nishina, N. Masui, and Y. Hasimoto. 1993. Measurement of transpiration rate, stomatal resistance and shading ratio of 'amenity plants'. J. SHITAI 4:131-138.
  3. Balse, S.F. 1995. The kitchen garden. Raised beds and electric chairs. Horticulture 73:34-39.
  4. Burge, S., A. Hedge, S. Wilson, B.J. Harris, and A. Robertson. 1987. Sick building syndrome: A study of 4373 office workers. Annals of Occupational Hygiene 31:493-504. https://doi.org/10.1093/annhyg/31.4A.493
  5. Carpenter, D.O. 1998. Human health effects of environmental pollutants: New insights. Env. Monitoring and Assessment 53:245-258. https://doi.org/10.1023/A:1006013831576
  6. Farquhar, G.D., von S. Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic $CO_{2}$ assimilation in leaves of C3 species. Planta 149:78-90. https://doi.org/10.1007/BF00386231
  7. Han, S.W. and J.S. Lee. 2002. Purification efficiency of $O_{3}$ and $SO_{2}$ by some oriental orchids. J. Kor. Soc. Hort. Sci. 43:487-491 (In Korean).
  8. Jackson, W.A. and R.J. Volk. 1970. Photorespiration. Annual Review Plant Physiology 21:385-432. https://doi.org/10.1146/annurev.pp.21.060170.002125
  9. Jang, H.S., S.G. Lee, J.H. Moon, and C.H. Park. 2010. Growth of Syngonium podophyllum in drainless containers fitted with drainage layers. Kor. J. Hort. Sci. Technol. 28:192-199 (In Korean).
  10. Jenkins, P.L., T.J. Phillips, E.J. Mulberg, and S.P. Hui. 1992. Activity patterns of Californians: Use of and proximity to indoor pollutant sources. Atmospheric Env. 26A:2141-2148.
  11. Kim, K.J., M.J. Kil, J.S. Song, E.H. Yoo, K.C. Son, and S.J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J. Amer. Soc. Hort. Sci. 133:521-526.
  12. Kim, M.G., C.O. Park, Y.J. Kwon, Y.K. Lee, and D.W. Lee. 1997. Variations of concentration levels of volatile organic compounds in the indoor air due to floor waxing. J. KAPPA 13(3):221-229.
  13. Kim, P.G. and E.J. Lee. 2001. Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular $CO_{2}$ pressure on photosynthesis. Kor. J. Agr. Forest Meteorology 3:126-133 (In Korean).
  14. Kim, P.G., Y.S. Yi, D.J. Chung, and S.Y. Woo. 2001. Effects of light intensity on photosynthetic activity of shade tolerant and intolerant tree species. J. Kor. For. Soc. 90:476-487 (In Korean).
  15. Kok, B. 1948. A critical consideration of the quantum yield of chlorella-photosynthesis. Enzymologia 13:1-16.
  16. Korean Floricultural Research Society. 2002. Floricultural and Horticultural Treatises. Moon Woon Dang Press. Seoul. p. 264.
  17. Mendell, M.J. and A.H. Smith. 1990. Consistant pattern of elevated symptoms in air-conditioned office buildings: A re-analysis of epidemiological studies. Amer. J. Public Health 80:1193-1199. https://doi.org/10.2105/AJPH.80.10.1193
  18. Park, S.H., Y.B. Lee, G.Y. Bea, and M. Kondo. 1998. Anion Evolution in plants and its involved factors. J. Kor. Soc. Hort. Sci. 39:115-118 (In Korean).
  19. Relf, D. and S. Dorn. 1995. Horticulture: Meeting the needs of special population. HortTechnology 5:94-103.
  20. Sehemel, G.A. 1980. Particle and gas deposition. Atmos. Env. 14:983-1011. https://doi.org/10.1016/0004-6981(80)90031-1
  21. Shin, H.S., Y.S. Kim, and G.S. Heo. 1993. Measurements of indoor and outdoor volatile organic compounds (VOCs) concentrations in ambient air. J. KAPPA 9(4):310-319.
  22. Snyder, S.D. 1990. Building interiors, plants and automation. Prentice Hall, Englewood Cliffs, NJ, USA. p. 5-29.
  23. Son, K.C. 2004. Indoor plants for human well-being. Joongang Life Publishing Co., Seoul, Korea. p.125-127.
  24. Son, K.C. and M.K. Kim. 1998. Influences of indoor light, temperature, absolute humidity, and $CO_{2}$ concentration on the changes of transpiration and photosynthesis rate of Pachira aquatica and their statistical modeling. J. Kor. Soc. Hort. Sci. 39:605-609 (In Korean).
  25. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310 (In Korean).
  26. Woleverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plant for indoor air pollution abatement. NASA Report. p. 1-2.
  27. Yoon, D.W. and J.D. Spengler. 1995. Standards for indoor air pollutant levels and ventilation rates. Architectural Institute of Korea 39(6):12-18 (In Korean).
  28. Zhang, J.J. and K. R. Smith. 2003. Indoor air pollution: A global problem. British Medical Bul. 68:209-225. https://doi.org/10.1093/bmb/ldg029