• Title/Summary/Keyword: 관입 저항

Search Result 140, Processing Time 0.027 seconds

Physical Properties of Organic Vegetable Cultivation Soils under Plastic Greenhouse (유기농 시설채소 재배지 토양의 물리적 특성변화)

  • Lee, Sang-Beom;Choi, Won-A;Hong, Seung-Gil;Park, Kwang-Lai;Lee, Cho-Rong;Kim, Seok-Cheol;An, Min-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.963-974
    • /
    • 2015
  • This study was conducted to determine the effects of organic vegetable cultivation on the soil physical properties in 33 farmlands under plastic greenhouse in Korea. We were investigated 5~8 farms per organic vegetable crops during the period from August to November 2014. The main cultivated vegetables were leafy lettuce (Lactuca sativa L.), Perilla leaves (Perilla frutescens var. Japonica Hara), cucumber (Cucumis sativus L.), strawberry (Fragaria ananassa L.) and tomato (Lycopersicon spp.). We have analyzed soil physical properties. The measured soil physical parameters were soil plough layer, soil hardness, penetration resistance, three soil phase, bulk density and Porosity. The measurement of the soil plough layer, soil hardness and penetration resistance were carried out direct in the fields, and the samples for other parameters were taken using the soil core method with approximately 20 mm diameter core collected from each organic vegetable field. Soil plough layer was average 36 cm and ranged between 30 and 50 cm, and slightly different depending on the sorts of vegetable cultivation. The soil hardness was $0.17{\pm}0.15{\sim}1.34{\pm}1.02$ in the topsoil, $0.55{\pm}0.34{\sim}1.15{\pm}0.62$ in the subsoil. It was not different between topsoil and subsoil, but showed a statistically significant difference between the leafy and fruit vegetables. Penetrometer resistance is one of the important soil physical properties that can determine both root elongation and yield. The increase in density under leafy vegetables resulted in a higher soil penetrometer resistance. Soil is a three-component system comprised of solid, liquid, and gas phases distributed in a complex geometry that creates large solidliquid, liquid-gas, and gas-solid interfacial areas. The three soil phases were dynamic and typically changed in organic vegetable soils under greenhouse. Porosity was characterized as range of $54.2{\pm}2.2{\sim}60.3{\pm}2.4%$. Most measured soils have bulk densities between 1.0 and $1.6gcm^{-3}$. To summarize the above results, Soil plough layer has been deepened in organic vegetable cultivation soils. Solid hardness (the hardness of the soil) and bulk density (suitable for the soil unit mass) have been lowered. Porosity (soil spatial content) was high such as a well known in organic farmlands. Important changes were observed in the physical properties according to the different vegetable cultivation. We have demonstrated that the physical properties of organic cultivated soils under plastic greenhouse were improved in the results of this study.

A Study on the Applicability of Arias Intensity Liquefaction Assessment (Arias Intensity 액상화 평가기법의 적용성에 관한 연구)

  • Hwang, Jungtae;Lee, Jongkeun;Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.6
    • /
    • pp.13-19
    • /
    • 2013
  • In this study, the target ground was selected for the assessment of liquefaction, for which energy-based Arias intensity liquefaction assessment method was applied, The results of evaluation by simplified method using conventional in-situ test were compared. The result of the assessment of liquefaction revealed that the safety factor of the Arias Intensity using the actual records of the Hachinohe and Ofunato earthquake showed generally similar trends with the simplified method, However, the Arias Intensity factor of safety for the artificial earthquake created from the design response spectrum showed some difference from the factors of safety of the simplified method. The shear stress ratio and the occurrence strength of the Arias Intensity are differently calculated between stress and energy, but the resistance stress ratio of the simplified method and the resistance strength of the Arias Intensity use the empirical chart of the results of the standard penetration test for the actual liquefaction areas by the earthquake, which seems the reason for the similar results between Arias Intensity assessment and stress concept simplified method for Hachinohe and Ofunato earthquakes. Therefore, it was found that the energy-based Arias Intensity liquefaction assessment could represent the dynamic changes of the ground caused by seismic characteristics such as acceleration, magnitude, duration and amplitude.

Engineering Performance of Extruded Fly Ash Cement Panel with Bottom Ash (잔골재로서의 바텀애시를 사용한 플라이애시 시멘트 압출경화체의 공학적 특성)

  • Lee, Myeong-Jin;Kim, Jin-Man;Han, Dong-Yeop;Choi, Duck-Jin;Lee, Keun-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • The aim of this research is providing the fundamental data for treating and recycling the byproducts by using the wet processed bottom ash as a fine aggregate replacement for cement-based extruded panel. Although the cement-based extruded panel was used mainly as a cladding component with its high strength and outstanding durability, it was hardly spread because of low economic feasibility due to the high cost of additives or fibers which were used to achieve 14 MPa of flexural strength as a cladding material. As a solution of this drawback, by the previous research, it was possible to replace cement by fly ash up to 80 % by decreasing quality criteria with restricting the application to indoor purpose. In this research, based on the previous research, by using the bottom ash as a replacement of fly ash, improvement of shape retention performance is tried. As a result of the experiment on evaluating the optimum content and PSD of bottom ash, as the fineness modulus and content of bottom ash was increased, the extruding performance was decreased and penetration resistance was increased. Additionally, the optimum content and the maximum particle size was found as 20 %, and 0.3 mm, respectively.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Geophysical Study on the Geoelectrical Structure of the Hwasan Caldera in the Euisung Sub-basin Using Magnetotelluric Survey (자기지전류 탐사를 이용한 의성소분지 화산 칼데라의 지구물리학적 연구)

  • Yang, Jun-Mo;Kwon, Byung-Doo;Cho, In-Ky;Lee, Heui-Soon;Park, Gye-Soon;Um, Joo-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.99-108
    • /
    • 2008
  • To extend our detailed knowledge for the Hwasan caldera, we carried out magnetotelluric (MT) survey, which is pretty sensitive to electrical property variation in both horizontal and vertical direction of subsurface, across the Hwasan caldera with the direction of EW. The 2-D inversion results of observed MT data lead to following conclusions. Firstly, the depth of the basin basement inferred by the MT inversion results matches well with that suggested by previous potential studies, but the basement resistivity seems fairly low when compared to that of general case. This feature might be related with the large-scaled, highly conductive layer beneath the Euisung Sub-basin suggested by the previous MT study. Secondly, the high resistivity zones reaching to 4000 $\Omega{\cdot}m$ are imaged around two external ring fault boundaries. These zones are thought of as the response of the rhyolitic dykes intruding along the ring fault, and in the previous gravity data correspond to relatively high density anomalies. Thirdly, low resistivity zone reaching to 200 $\Omega{\cdot}m$ is detected around a depth of 1km beneath the central part of the caldera, which has not been yet reported in korean geophysical literatures. If we take account of the evolution model of the Hwasan caldera, this zone is regarded as the past sedimentary layer that subsided during the period of forming external ring fault system. In addition, the relatively low density anomaly observed in the central part of the caldera may be attributed to this sedimentary layer.

Studies on Amelioration of Soil Physico-Chemical Properties and Rice Yield in Sandy Tidal Saline Paddy Soil (사질(砂質) 염해답(鹽害畓)에서 개량제(改良劑) 시용(施用)이 토양(土壤)의 물리화학성(物理化學性) 변화(變化)와 수도수량(水稻收量)에 미친 영향(影響))

  • Yoo, Chul-Hyun;Kim, Jong-Gu;Choi, Song-Yeol;Cho, Guk-Hyun;Yoo, Sug-Jong;So, Jae-Dong;Rhee, Gyeong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.241-248
    • /
    • 1993
  • An experiment was conducted in 1990~1991 to study the effects of various soil amelioration on the soil productivity and machine workability at tidal land paddy field of Kyewhado Substation, Homam Crop Experiment Station. The soil, Munpo Series(fine sandy loam, Typic Fluvaquents) was treated with gipsum, rice straw, rice straw compost and foreign soil(at 20cm depth) after deep ploughing. The results are surmerized as follows. 1. Sand and clay were slightly increased, while silt was slightly decreased in the rice straw and compost plots. The soil texture was changed from loam to sand loam by the addition of foreign soil 2. Soil bulk density and porosity was decreased in the rice straw, compost and foreign soil addition plots. 3. Cone penetration resistance was $12.5kg/cm^2$ at 10cm of soil depth before experiment and $12.5kg/cm^2$ at 20cm of soil depth after experiment except control, and the root zone was expended down to 20cm. 4. Soil salt content before experiment was 0.46 and 0.48% for surface soil(10cm) and subsoil(20cm), respectively ; The salt content of ameliorated plot was 0.26~0.32% and 0.16~0.31%, respectively, indicating good leaching of soil salt by the soil improvements. 5. The yields of rice in different treatments were in the order of the foreign soil addition > compost > gypsum > rice straw > control.

  • PDF

Changes of Physico-Chemical Properties of Tidal soils on Their Mafurities -II. Gwanghwal and Poseung Series (간척지(干拓地) 토양(土壤)의 숙성화(熟成化) 정도별(程度別) 이화학성(理化學性) 변화(變化) 연구 -II. 광활(廣活) 및 포승통(浦升統)에 관(關)하여)

  • Yoo, Chul-Hyun;Kim, Jong-Gu;Lee, Jong-Sik;Kang, Jong-Gook;So, Jae-Don;Park, Keon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.4
    • /
    • pp.259-267
    • /
    • 1990
  • This study was carried out by investigating the changes of physico-chemical and mechanical properties of Gwanghwal and Poseung series in order to obtain basic information on the soil improvement and management. 1. In Gwanghwal series, the content of salt in soil and ground water before rice transplanting at the 21st year after reclamation were 0.29 and 1.02 percent respectively, and the safty cultivation of paddy rice was possible after 33 years of reclamation in both soil series. 2. Clay contents. atterberg limits and clay activity according to the age of reclaimation showed negative correlation. but sand content and N-value were positive in them. 3. Cone index was lower than $3kg/cm^2$ for the first 5 years after reclaimation in both soil series, and the formation of hard pan were 33rd and 49th year after reclamation in Gwanghwal and Poseung series respectively, and its thickness was more in Poseung than in Gwanghwal series. 4. Shearing resistance decreased with the age of reclaimation in both soil series. and friction resistance increased in Gwanghwal than Poseung siries. 4. Shearig resistance decreased with the age of reclaimation in both soil series, and friction resistance increased in Gwanghwal than Poseung series. 5. Soil pH. available, $SiO_2$, $Mg^2$, $K^+$, $Na^+$ and C. E. C showed negative correlation. with the year cultivated paddy rice. but O. M. ava ilable $P_2O_5Ca^{2+}$ and T-N had positive one in both soil series. Contents of O. M and $Ca^{2+}$ and T-N had positive one in both soil series. Contents of O. M and $Ca^{2+}$ were high in Gwanghwal, but C. E. C. was in Poseung series.

  • PDF

A Study on the Reinforcement Effect Analysis of Aging Reservoir using Grout Material recycled Power Plant Byproduct (발전부산물을 재활용한 그라우트재의 노후 저수지 보강효과 분석에 관한 연구)

  • Seo, Se-Gwan;An, Jong-Hwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.23-33
    • /
    • 2021
  • In Korea, many reservoirs have been built for the purpose of solving the food shortage problem and supplying agricultural water. However, the current 75.6% of the reservoirs are in serious aged as more than 50 years have passed since the year of construction. In the case of such an aging reservoir, the stability due to scour and erosion inside the reservoir is very reduced, and if concentrated rainfall due to recent abnormal weather occurs, the aging reservoir may collapse, leading to a lot of damage to property and human life. Accordingly, each agency that manages aging reservoirs uses Ordinary Portland Cement (OPC) as an injection material and applies the grouting method. However, in the case of OPC, it may deteriorate over time and water leakage may occur again. And there are environmental problems such as consumption of natural resources and generation of greenhouse gases. So, there is a need to develop new materials and methods that can replace the OPC. In this study, an laboratory test and analysis were performed on the grout material developed to induce a curing reaction similar to that of OPC by recycling power plant byproduct. In addition, test in the field such as electric resistivity survey, Standard Penetration Test (SPT), and field permeability test were performed to analyzed to reinforcement effect and determine the possibility of using instead of OPC. As a results of the test, in the case of recycled power plant byproduct, the compressive strength was 2.9 to 3.2 times and the deformation modulus was 2.3 to 3.3 times higher, indicating that it is excellent in strength and can be used instead of OPC. And it was analyzed that the N value of the reservoir was increased by 1~2, and the coefficient of permeability (k) decreased to the level of 8.9~42.5%. showing sufficient reinforcing effect in terms of order.

Changes in the Soil Physical Properties of Vineyard Converted from Paddy Field (논에서 전환한 포도원의 토양물리적 특성변화)

  • Yun, Eul-Soo;Jung, Ki-Youl;Park, Ki-Do;Ko, Jee-Yeon;Lee, Jae-Saeng;Park, Sung-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.3
    • /
    • pp.145-151
    • /
    • 2009
  • This study was conducted to develop rational soil management and enhance the productivity of lands converted from paddy soils. Specifically, the changes in the soil physical properties brought about by the change in land usage from paddy soil were evaluated. This was carried out from 1999 to 2001 at 50 site in large-scale converted paddy fields of Kimcheon, Youngcheon, Gyeongsan and Milyang in the Youngnam region, categorized according to soil texture and drainage class. The ridge height of converted paddy soils was higher in coarse-textured and poorly-drained soils than in fine-textured and well-drained soils. The gray color of the surface soil was of lesser degree in converted soils than paddy soils and more notable in welldrained soils. The porosity ratio and the formation of aggregate structure were higher, and the appearance of soil mottling was deeper in converted paddy fields than in paddy soils. The glaying layer "g" of surface soil degraded with time. The porosity and amount of water stable aggregate was found to increase with time after conversion. The penetration resistance of the converted paddy soil was lower and deeper with time after conversion. The soil aeration of the converted paddy soil was lower in sandy loam than in loamy soil. Furthermore, soil aeration was influenced by ridge height and drainage class in poorly-drained soils.

Variation of Soil Properties by Permeating Injection of Chemical Grouts (약액(藥液)의 침투주입(浸透注入)에 의한 토질성상변화(土質性狀變化))

  • Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.1-9
    • /
    • 1982
  • Variation of soil properties is studied by permeating injection of chemical grouts, such as cement type, water-glass type and acrylamide type, to the same soil samples with different densities. Moreover, injection tests using specially prepared equipments of 1.0 shot system and 1. 5 shot system are attempted to investigate permeating injection effects in highly compacted soil and in the presence of ground water. The main factor which causes the improvement of cut-off effect and shearing strength is the cohesion of soil. The strength in the loose state is fundamentally governed by the membrane cohesion, meanwhile, in the loose state is governed by the structural cohesion. Injection effects under the ground water flow is considerably decreased, and effective gelling ratio of approximate 45~80% is observed by variation of velocity and gel time, besides grading of injection materials has high relation with permeation and traveling length but has little relation with effective gelling ratio. Permeating injection effects, such as gelling scope, gelling strength in highly compaoted soil conditions can be confirmed by penetration resistance diagram and iso-strength curve.

  • PDF