DOI QR코드

DOI QR Code

Physical Properties of Organic Vegetable Cultivation Soils under Plastic Greenhouse

유기농 시설채소 재배지 토양의 물리적 특성변화

  • 이상범 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 최원아 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 홍승길 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 박광래 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 이초롱 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 김석철 (농촌진흥청 국립농업과학원 유기농업과) ;
  • 안민실 (농촌진흥청 국립농업과학원 유기농업과)
  • Received : 2015.11.13
  • Accepted : 2015.12.01
  • Published : 2015.12.31

Abstract

This study was conducted to determine the effects of organic vegetable cultivation on the soil physical properties in 33 farmlands under plastic greenhouse in Korea. We were investigated 5~8 farms per organic vegetable crops during the period from August to November 2014. The main cultivated vegetables were leafy lettuce (Lactuca sativa L.), Perilla leaves (Perilla frutescens var. Japonica Hara), cucumber (Cucumis sativus L.), strawberry (Fragaria ananassa L.) and tomato (Lycopersicon spp.). We have analyzed soil physical properties. The measured soil physical parameters were soil plough layer, soil hardness, penetration resistance, three soil phase, bulk density and Porosity. The measurement of the soil plough layer, soil hardness and penetration resistance were carried out direct in the fields, and the samples for other parameters were taken using the soil core method with approximately 20 mm diameter core collected from each organic vegetable field. Soil plough layer was average 36 cm and ranged between 30 and 50 cm, and slightly different depending on the sorts of vegetable cultivation. The soil hardness was $0.17{\pm}0.15{\sim}1.34{\pm}1.02$ in the topsoil, $0.55{\pm}0.34{\sim}1.15{\pm}0.62$ in the subsoil. It was not different between topsoil and subsoil, but showed a statistically significant difference between the leafy and fruit vegetables. Penetrometer resistance is one of the important soil physical properties that can determine both root elongation and yield. The increase in density under leafy vegetables resulted in a higher soil penetrometer resistance. Soil is a three-component system comprised of solid, liquid, and gas phases distributed in a complex geometry that creates large solidliquid, liquid-gas, and gas-solid interfacial areas. The three soil phases were dynamic and typically changed in organic vegetable soils under greenhouse. Porosity was characterized as range of $54.2{\pm}2.2{\sim}60.3{\pm}2.4%$. Most measured soils have bulk densities between 1.0 and $1.6gcm^{-3}$. To summarize the above results, Soil plough layer has been deepened in organic vegetable cultivation soils. Solid hardness (the hardness of the soil) and bulk density (suitable for the soil unit mass) have been lowered. Porosity (soil spatial content) was high such as a well known in organic farmlands. Important changes were observed in the physical properties according to the different vegetable cultivation. We have demonstrated that the physical properties of organic cultivated soils under plastic greenhouse were improved in the results of this study.

유기농 시설채소 재배지 토양의 물리적 특성조사는 전국 33개 농가 포장에서 2014년 8월부터 11월 사이에 조사하였다. 시설채소 재배지 선정은 엽채류인 상추(Lactuca sativa L.)와 잎들깨(Perilla frutescens var. japonica Hara), 과채류인 오이(Cucumis sativus L.), 딸기(Fragaria ananassa L.), 토마토(Lycopersicon spp.)를 경작하는 채소 종류별 5~8개 농가씩 선정하여 경도, 작토심 및 삼상 등 토양의 물리적 특성을 현장조사와 실험실내에서 분석하였다. 연구결과 작토심은 30~50 cm 범위로 평균 36 cm이었고, 재배되는 채소의 종류에 따라서 다소 차이가 있었다. 토양의 경도는 표토에서 $0.17{\pm}0.15{\sim}1.34{\pm}1.02$, 심토에서 $0.55{\pm}0.34{\sim}1.15{\pm}0.62$로 모두 매우 우수하였으며, 표토와 심토간에는 큰 차이가 없었으나 엽채류와 과채류 간에는 통계적으로 유의적인 차이를 나타내었다. 관입저항성은 뿌리 신장과 작물 수량을 결정짓는 토양의 물리적 특성중의 하나이다. 관입저항성은 엽채류 재배지에서 답압으로 인하여 다소 높게 나타났다. 토양의 삼상은 유기농 시설재배지 토양에서 동적이고, 전형적으로 변화되었다. 공극률은 $54.2{\pm}2.2{\sim}60.3{\pm}2.4%$ 범위로 높은 경향을 나타내었다. 이상의 결과를 요약해 보면 유기농 시설채소 재배지 토양은 토심은 깊어지고, 고상과 경도(흙의 단단함), 용적밀도(토양 단위 용적당 질량)는 낮아졌으며, 공극률(토양속 공간함유율)은 높아지는 등 유기농 시설재배지 토양의 물리성이 양호하였다.

Keywords

References

  1. Bertolino A. V. F. A., Nelson F. Fernandes, Joao P. L. Miranda, Andrea P. Souza, Marcel R. S. Lopes, and Francesco Palmieri. 2010. Effects of plough pan development on surface hydrology and on soil physical properties in Southeastern Brazilian plateau. Journal of Hydrology 393: 94-104. https://doi.org/10.1016/j.jhydrol.2010.07.038
  2. Blake, G. R. and K. H. Hartge. 1986. Bulk Density in A. Klute, ed., Methods of Soil Analysis, Part I. Physical and Mineralogical Methods: Agronomy Monograph no. 9 (2nd ed.) pp. 363-375.
  3. Bruggen H. C. A. V., K. Sharma, E. Kaku, S. Karfopoulos, V. V. Zelenev, and W. J. Blok. 2015. Soil health indicators and Fusarium wilt suppression in organically and conventionally managed greenhouse soils. Applied Soil Ecology 86: 192-201. https://doi.org/10.1016/j.apsoil.2014.10.014
  4. Bulluck III, L. R., M. Brosius, G. K. Evanylo, and J. B. Ristaino. 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Applied Soil Ecology 19: 147-160. https://doi.org/10.1016/S0929-1393(01)00187-1
  5. Cooper, J. M., G. Butler, and C. Leifert. 2011. Life cycle analysis of greenhouse gas emissions from organic and conventional food production systems, with and without bio-energy options. NJAS - Wageningen Journal of Life Sciences 58: 185-192. https://doi.org/10.1016/j.njas.2011.05.002
  6. Crittenden, S. J., N. Poot, M. Heinen, D. J. M. V. Balen, and M. M. Pulleman. 2015. Soil physical quality in contrasting tillage systems in organic and conventional farming. Soil & Tillage Research 154: 136-144. https://doi.org/10.1016/j.still.2015.06.018
  7. FiBL and IFOAM. 2015. The World of Organic Agriculture Statistics and Emerging Trends 2015. Frick, Switzerland and Bonn, Germany, pp. 25-33.
  8. Gajic, B. 2013. Physical properties and organic matter of Fluvisols under forest, grassland, and 100 years of conventional tillage. Geoderma 200-201: 114-119. https://doi.org/10.1016/j.geoderma.2013.01.018
  9. Gronle A., Guido Lux, Herwart Bohm, Knut Schmidtke, Melanie Wild, Markus Demmel, Robert Brandhuber, Klaus-Peter Wilbois, and Jurgen HeB. 2015. Effect of ploughing depth and mechanical soil loading on soil physical properties, weed infestation, yield performance and grain quality in sole and intercrops of pea and oat in organic farming. Soil & Tillage Research 148: 59-73. https://doi.org/10.1016/j.still.2014.12.004
  10. Herencia, J. F., P. A. Garcia-Galavis, and C. Maqueda. 2011. Long-Term Effect of Organic and Mineral Fertilization on Soil Physical Properties Under Greenhouse and Outdoor Management Practices. Pedosphere 21(4): 443-453. https://doi.org/10.1016/S1002-0160(11)60146-X
  11. Hole, D. G., A. J. Perkins, J. D. Wilson, I. H. Alexander, P. V. Grice, and A. D. Evans. 2005. Does organic farming benefit biodiversity? Biological Conservation 122: 113-130. https://doi.org/10.1016/j.biocon.2004.07.018
  12. Larsen, E., J. Grossman, J. Edgell, G. Hoyt, D. Osmond, and S. Hu. 2014. Soil biological properties, soil losses and corn yield in long-term organic and conventional farming systems. Soil & Tillage Research 139: 37-45. https://doi.org/10.1016/j.still.2014.02.002
  13. Mas-Colell, A., M. Whinston, and J. Green, 1995. Microeconomic Theory. Oxford University Press, New York.
  14. Meier M. S., F. Stoessel, N. Jungbluth, R. Juraske, C. Schader, and M. Stolze. 2015. Environmental impacts of organic and conventional agricultural products e Are the differences captured by life cycle assessment? J. Environ. Manag. 149: 193-208. https://doi.org/10.1016/j.jenvman.2014.10.006
  15. Nair, A. and M. Ngouajio. 2012. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Applied Soil Ecology 58: 45-55. https://doi.org/10.1016/j.apsoil.2012.03.008
  16. Padel, S., H. Rocklinsberg, and O. Schmid. 2009. The implementation of organic principles and values in the European Regulation for organic food. Food Policy 34: 245-251. https://doi.org/10.1016/j.foodpol.2009.03.008
  17. Prasad, R. 1996. Cropping systems and sustainability of agriculture. Indian Farming 46: 39-45.
  18. Sequeira C. H., S. A. Wills, C. A. Seybold, and L. T. West. 2014. Predicting soil bulk density for incomplete databases. Geoderma 213: 64-73. https://doi.org/10.1016/j.geoderma.2013.07.013
  19. Schafer, R. L., C. E. Johnson, A. J. Koolen, S. C. Gupta, and R. Horn. 1992. Future research needs in soil compaction. Transactions of the American Society of Agricultural Engineers 35: 1761-1770. https://doi.org/10.13031/2013.28795
  20. Shipitalo, M. J. and R. Protz. 1987. Comparison of morphology and porosity of a soil under conventional and zero tillage. Can. J. Soil Sci. 67: 445-456. https://doi.org/10.4141/cjss87-043
  21. Stanhill, G. 1990. The comparative productivity of organic agriculture. Agriculture, Ecosystems & Environment 30: 1-26. https://doi.org/10.1016/0167-8809(90)90179-H
  22. Wang E., R. M. Cruse, Y. Zhao, and X. Chen. 2015. Quantifying soil physical condition based on soil solid, liquid and gaseous phases. Soil & Tillage Research 146: 4-9.
  23. Whalley, W. R., J. To, B. D. Kay, and A. P. Whitmore. 2007. Prediction of the penetrometer resistance of agricultural soils with models with few parameters. Geoderma 137: 370-377. https://doi.org/10.1016/j.geoderma.2006.08.029
  24. Weida Gao, W. Richard Whalley, Zhengchao Tian, Ju Liu, and Tusheng Ren. 2016. A simple model to predict soil penetrometer resistance as a function of density, drying and depth in the field. Soil & Tillage Research 155: 190-198. https://doi.org/10.1016/j.still.2015.08.004