• Title/Summary/Keyword: 과학 모델링 수업

Search Result 54, Processing Time 0.028 seconds

Composition and Attributes of Modeling Instructions and Factors of Teacher Competence in Elementary Science Classes: A Qualitative Meta-Analysis (초등과학 모델링 수업의 구성과 속성 및 교사 역량 요인에 대한 질적 메타 분석)

  • Kim, Hyun-Ju;Lim, Chae-Seong;Lee, Ki-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.3
    • /
    • pp.434-454
    • /
    • 2023
  • This study explored the composition and attributes of modeling instructions and factors of teacher competence in elementary science classes. The study also examined educational research papers regarding modeling instruction cases in elementary schools and elementary teachers' perceptions of modeling instructions using qualitative meta-analysis, which can integrate findings from qualitative research. This investigation led to creating a small group to compose modeling instructions. Furthermore, the modeling approach was demonstrated to go through the process of generating, evaluating, and modifying the model. The attributes of modeling instructions can be divided into factors that affect modeling instructions and competence factors necessary for students participating in modeling instructions. The factors affecting modeling instructions included "small group interactions" and "time limitation in classes." The competence factors necessary for students participating in modeling instructions included "scientific knowledge," "meta-modeling knowledge," and the "ability to control emotions." The teacher competence factors in modeling instructions regarding knowledge, function, and attitude were explored. The teacher competence factors in elementary modeling instructions included "meta-modeling knowledge," "knowledge of modeling assessment," "emotional support for students," and the "awareness of modeling value." Accordingly, this study offered some recommendations for effective modeling instructions.

Changes in Teaching Practices of Elementary School Teachers in Scientific Modeling Classes: Focused on Modeling Pedagogical Content Knowledge (PCK) (과학 모델링 수업에서 나타난 초등 교사의 수업 실행 변화 -모델링 PCK를 중심으로-)

  • Uhm, Janghee;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.5
    • /
    • pp.543-563
    • /
    • 2020
  • This study explores how the teaching practices of two teachers changed during scientific modeling classes. It also aims to understand these changes in terms of the teachers' modeling pedagogical content knowledge (PCK) development. The study participants were two elementary school teachers and their fifth-grade students. The teachers taught eight lessons of scientific modeling classes about the human body. The data analysis was conducted for lessons 1-2 and 7-8, which best showed the change in teaching practice. The two teachers' teaching practices were analyzed in terms of feedback frequency, feedback content, and the time allocated for each stage of model generation, evaluation, and modification. Teacher A led the evaluation and modification stages in a teacher-driven way throughout the classes. In terms of feedback, teacher A mainly used answer evaluation feedback in lesson 1-2; however, in lesson 7-8, the feedback content changed to thought-provoking feedback. Meanwhile, teacher B mostly led a teacher-driven model evaluation and modification in lesson 1-2; however, in lesson 7-8, she let her students lead the model evaluation and modification stages and helped them develop models through various feedbacks. The analysis shows that these teaching changes were related to the development of modeling PCK components. Furthermore, the two teachers' modeling PCK differed in teaching orientation, in understanding the modeling stages, and in recognizing the value of modeling, suggesting the importance of these in modeling teaching practice. This study can help improve the understanding of modeling classes by revealing the relationship between teaching practices and modeling PCK.

Analysis of Trends of Model and Modeling-Related Research in Science Education in Korea (과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석)

  • Cho, Hye Sook;Nam, Jeonghee
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.4
    • /
    • pp.539-552
    • /
    • 2017
  • The purpose of this study is to investigate the trends of model and modeling-related research in science education from 1989 to 2016 in Korea. Eighty-five (85) models and modeling-related journal articles were extracted from the KCI-listed journals and analyzed according to the criteria such as participants, research fields, research design, methods, data collection and elements of metamodeling knowledge. According to research participants, three out of four (3/4) were studied for students and the rest were for teachers. More than half of the studies for students were conducted with middle and high school students. The research fields of models and modeling-related researches in science education were comprised of earth science, chemistry, biology science, physics and science course. With regards to research design, the highest type is qualitative research and followed by hybrid research and quantitative research. According to research methods, the most numerous researches that were analyzed was the effectiveness of program, which was a developed model and modeling-related research. The analysis from the elements of the metamodeling knowledge showed most of model and modeling-related research utilized for the change of scientific concept or understanding.

The Change in Modeling Ability of Science-Gifted Students through the Co-construction of Scientific Model (과학적 모델의 사회적 구성 수업을 통한 과학 영재 학생들의 모델링 능력 변화)

  • Park, Hee-Kyung;Choi, Jong-Rim;Kim, Chan-Jong;Kim, Heui-Baik;Yoo, Junehee;Jang, Shinho;Choe, Seung-Urn
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • The purpose of this study is to investigate the changes of students' modeling ability in terms of 'meta-modeling knowledge' and 'modeling practice' through co-construction of scientific model. Co-construction of scientific model instructions about astronomy were given to 41 middle-school students. The students were given a before and after instruction modeling ability tests. The results show that students' 'meta-modeling knowledge' has changed into a more scientifically advanced thinking about models and modeling after the instruction. Students were able to be aware that 'they could express their thoughts using models', 'many models could be used to explain a single phenomena' and 'scientific models may change' through co-construction modeling process. The change in the 'modeling practice' of the students was divided into four cases (the level improving, the level lowering, the high-level maintaining, the low-level maintaining) depending on the change of pre-posttest levels. The modeling practice level of most students has improved through the instruction. These changes were influenced by co-construction process that provides opportunities to compete and compare their models to other models. Meanwhile, the modeling practice level of few students has lowered or maintained low level. Science score of these students at school was relatively high and they thought that the goal of learning is to get a higher score in exams by finding the correct answer. This means that students who were kept well under traditional instruction may feel harder to adapt to co-construction of scientific model instruction, which focuses more on the process of constructing knowledge based on evidences.

Exploring the Influence of an Explicit and Reflective Modeling Instruction on Elementary Students' Metamodeling Knowledge (명시적-반성적 접근을 활용한 모델링 수업이 초등학생들의 메타모델링 지식에 미치는 영향 탐색)

  • Lim, Sung-Eun;Choe, Seung-Urn;Park, Changmi;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.2
    • /
    • pp.127-140
    • /
    • 2020
  • This study investigated the influence of an explicit and reflective modeling instruction on the metamodeling knowledge of fourth-graders. Two fourth-grade classes in an elementary school in Seoul were selected and each class was assigned to an experimental group and a control group, respectively. The experimental group was engaged in explicit and reflective modeling instruction, whereas the control group was engaged in implicit modeling instruction. The two groups were surveyed before and after instruction on the basis of five metamodeling knowledge categories: definition, purpose, design/construction, changeability, and multiplicity. The experimental group showed positive changes in model's meaning, examples, purpose, changeability as well as multiplicity. In contrast, fewer students in the control group understood the meaning of the model and modeling. They also showed limited changes in their understandings with regards to the modeling instruction, and could not expand their understanding of the nature of model and modeling. The findings indicate that an explicit and reflective modeling instruction has positive influence on elementary students' metamodeling knowledge.

Korean Teachers' Conceptions of Models and Modeling in Science and Science Teaching (과학 탐구와 과학 교수학습에서의 모델과 모델링에 대한 교사들의 인식)

  • Kang, Nam-Hwa
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.1
    • /
    • pp.143-154
    • /
    • 2017
  • Science inquiry has long been emphasized in Korean science education. Scientific modeling is one of key practices in science inquiry with a potential to provide students with opportunities to develop their own explanations and knowledge thereafter. The purpose of this study is to investigate teacher's understanding of models in science and science teaching. A professional development program on Models (PDM) was developed and refined through three times of implementation while teachers' conceptions of models and modeling were examined. A total of 29 elementary and secondary teachers participated in this study. A survey based on model use of scientists in the history of science was developed and used to collect data and audio recordings of discussions among teachers and artifacts produced by the teachers during PDM were also collected. Three ways of ontological and two ways of epistemological understanding of models and modeling were found in teachers' ideas. After PDM, a quarter of the teachers changed their ontological understanding whereas very few changed their epistemological understanding. In contrast, more than two thirds of the teachers deepened and extended their ideas about using models and modeling in teaching. There were no clear relationships between teachers' understanding of models and ways and ideas about using models in science teaching. However, teachers' perceptions of school conditions were found to mediate their intention to use models in science teaching. The findings indicate possible approaches to professional development program content design and further research.

Exploring How a High School Science Teacher's Understanding and Facilitation of Scientific Modeling Shifted through Participation in a Professional Learning Community (교사학습공동체에 참여한 한 고등학교 교사의 과학적 모델링에 대한 이해 및 수업 실행 변화 탐색 -프레임 분석을 중심으로-)

  • Shim, Soo-Yean
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.29-40
    • /
    • 2020
  • The purpose of this study is to explore how a high school science teacher (Teacher E) shifted her understanding and facilitation of scientific modeling through participation in a professional learning community (PLC) for over a year. Based on socially situated theory of learning, I focused on examining Teacher E's frames about scientific modeling from her social interactions. Teacher E participated in her school-based PLC over a year and collaborated with other science teachers, coaches, and researchers to improve science instruction. I qualitatively explored her participation in 6 full-day professional learning opportunities-studios-where the PLC members collectively planned, implemented, and debriefed modeling-based lessons. Especially, I focused on two Studios (Studio 2, 6) where Teacher E became the host teacher and implemented the lessons. I also examined her classroom teaching in those Studios. To understand how the PLC inquiry affected the shifts observed in Teacher E's understanding and practice, I explored how the inquiry evolved over the 6 Studios. Findings suggest that in Studio 2, Teacher E viewed students' role in scientific modeling as to fill out the worksheet with "correct" answers. Meanwhile, in Studio 6, she focused on helping students collaborate to construct explanatory models of phenomena using evidence. The PLC inquiry, focused on supporting students' construction of evidence-based explanations and collaboration in scientific modeling, seemed to promote the shifts observed in Teacher E's understanding and facilitation of scientific modeling. These findings can inform educational researchers and practitioners who aim to promote teachers' professional learning to support students' epistemic practices.

Elementary Students' Creativity Appear in Small Group Interactions During Model-Based Classrooms on Terraforming (테라포밍에 대한 과학적 모델링 수업에서 소그룹 상호작용 중 발현되는 초등학생의 창의성)

  • Park, Shin Hee;Choe, Seung Urn;Kim, Chan Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.6
    • /
    • pp.611-620
    • /
    • 2020
  • The purpose of the study is to find creativity factors of students in the process of small group modeling and relate them to the types of interactions among students. In order to capture students' detailed interactions, this study was conducted as an 'essential case study' through qualitative analysis. We have developed the modules of nine lessons about terraforming, and they were used in an actual classroom. In order to understand the creativity of the students in the process of modeling, students' discourses and interview data were analyzed using 19 creative factors or abilities. The findings are as follows. Frequently found creativity factors are Elaboration, Evaluation, Visualization, Resist premature closer, Originality, Analysis and Concentration. And students' interactions that affect students' creativity in the process of modeling can be classified into four categories: Suggestion, Agreement, Questioning, Refutation, and Conversion. Through each interaction, students demonstrated the process of expressing and modifying their own thoughts and ideas in the modeling process. The findings of the study suggest that it is important to the teachers to understand types of interactions among students and the relationship between the types of interaction and creativity factors for students' creative modeling in modeling-based learning.

Exploring the Changes in Elementary Teachers' Modeling pPCK for Science Modeling Instructions Through Knowledge Exchange of the Refined Consensus Model (개선된 합의 모델(RCM)의 지식 교환을 통한 초등교사의 모델링 pPCK 변화 탐색)

  • Hyun-Ju Kim;Chae-Seong Lim;Ki-Young Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.1
    • /
    • pp.105-117
    • /
    • 2024
  • The purpose of this study was to explore changes in elementary teachers' modeling pPCK (personal PCK) resulting from knowledge exchange within the realms of PCK described in the Refined Consensus Model (hereafter RCM). For this purpose, a professional learning community (hereafter PLC) was established for three elementary school teachers to facilitate knowledge exchange specifically focused on science modeling instructions. The study then analyzed the CoRe (content representations) written by the research participants twice to explore any changes in modeling pPCK (personal PCK). In addition, the discourse shared by the participants in the PLC and the data from the in-depth interviews were also analyzed using grounded theory research methods. The results of the study showed that there was no significant change in knowledge of the science curriculum in elementary teachers' modeling pPCK, but there were changes in orientations toward teaching science, knowledge of students' understanding in science, knowledge of instructional strategies and representations, and knowledge of assessment of science learning. Furthermore, the analysis of PLC discourse and in-depth interviews showed that modeling instructions reflection (ePCK; enacted PCK) and educational research-based modeling cPCK (collective PCK) influenced these changes in teachers' modeling pPCK. Accordingly, this study suggests recommendations for pedagogical approaches aimed at improving teachers' modeling PCK.

Enhancing Preservice Teachers' Science Self-Efficacy Beliefs and Pedagogical Content Knowledge (PCK) through Scientific Investigations (미국 초등교사교육 과정 과학교육방법론 수업(Science Methods Course)의 과학적 탐구 활동을 통한 예비교사들의 과학교수학습에 대한 자기 효능감 및 PCK 이해의 향상)

  • Choi, Sanghee;Lee, Young Hee
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.4
    • /
    • pp.406-418
    • /
    • 2015
  • This study was designed to enhance preservice teachers' self-efficacy beliefs and pedagogical content knowledge (PCK) through scientific investigations based on current science education reforms. To do so, a science methods course was revised to include modeling effective scientific inquiry practices as well as designing and teaching scientific investigations in the K-5 practicum classrooms (Revised Science Methods Course). This study assessed the following research questions: (1) What level of PCK do preservice teachers have before and after the completion of RSMC; (2) To what extent do participants change their self-efficacy in science teaching after completing RSMC; and (3) Is there any correlation between participants' changes in self-efficacy and the level of PCK. Participants were 76 preservice teachers enrolled in a science methods course offered at a medium-sized university in the midwestern United States. This study employed the STEBI-B survey and the PCK rubric. There result of the study indicated that there was significant increase in Personal Science Teaching Efficacy (PSTE) of the participant preservice teachers after the completion of the course. Based on the PCK rubric analysis, there was a significant increase in mean scores of the post-RSMC lesson compared to those of the pre-RSMC lesson. The correlational analysis of participants showed a positive correlation between changes in self-efficacy and the level of PCK. Thus, it may be concluded that the reform-based science methods course had a positive impact on participants' self-efficacy in science teaching through correcting misconceptions, developing higher level of PCK, and modeling scientific investigation in their practicum schools.