Acknowledgement
이 논문은 2022년 대한민국 교육부와 한국연구재단의 인문사회분야 중견연구자지원사업의 지원을 받아 수행된 연구임(NRF-2022S1A5A2A01038760)
References
- 강남화, 이은미(2013). 2009 개정 과학교육과정에 따른 고등학교 물리 교과서 탐구활동 분석. 한국과학교육학회지, 33(1), 132-143. https://doi.org/10.14697/JKASE.2013.33.1.132
- 강남화(2017). 과학 탐구와 과학 교수학습에서의 모델과 모델링에 대한 교사들의 인식. 한국과학교육학회지, 37(1), 143-154. https://doi.org/10.14697/JKASE.2017.37.1.0143
- 교육부(2022). 과학과 교육과정. 교육부 고시 제2022-33호.
- 나장함(2008). 질적 메타분석에 대한 고찰. 교육과정연구, 26(4), 229-252. https://doi.org/10.15708/KSCS.26.4.200812.010010
- 박신희, 최승언, 김찬종(2020). 테라포밍에 대한 과학적 모델링 수업에서 소그룹 상호작용 중 발현되는 초등학생의 창의성. 한국과학교육학회지, 40(6), 611-620. https://doi.org/10.14697/JKASE.2020.40.6.611
- 박지연, 이경호(2008). 통합적 정신모형 이론에 기반한 4M 순환학습 수업모형의 효과: 고등학생의 원운동 관련 기초 개념과 정신모형의 발달 측면에서. 한국과학교육학회지, 28(4), 302-315. https://doi.org/10.14697/JKASE.2008.28.4.302
- 석윤수, 윤혜경(2022). 초등학생의 계절 변화 원인에 관한 지구본 활용 모델링 분석. 초등과학교육, 41(4), 673-689.
- 양일호, 정진수, 권용주, 정진우, 허명, 오창호(2006). 과학자의 과학지식 생성 과정에 대한 심층 면담 연구. 한국과학교육학회지, 26(1), 88-98. https://doi.org/10.14697/JKASE.2006.26.1.88
- 엄장희, 김희백(2020). 과학 모델링 수업에서 나타난 초등 교사의 수업 실행 변화: 모델링 pck를 중심으로. 한국과학교육학회지, 40(5), 543-563. https://doi.org/10.14697/JKASE.2020.40.5.543
- 엄장희, 김희백(2021). 초등학교의 협력적 과학 모델링 수업에서 나타난 리더의 행위주체성 탐색. 한국과학교육학회지, 41(4), 339-358. https://doi.org/10.14697/JKASE.2021.41.4.339
- 오필석, 이정숙(2014). 예비 초등 교사들의 과학 모델 평가 기준. 한국과학교육학회지, 34(2), 135-146. https://doi.org/10.14697/JKASE.2014.34.2.0135
- 오필석(2009). 과학과 과학 교육에서 사용되는 모델에 관한 예비 초등 교사들의 인식. 초등과학교육, 28(4), 450-466.
- 유연준, 오필석(2016). 초등학생들의 계절의 변화 단원의 학습에서 모델링 중심 과학 탐구 수업의 효과. 초등과학교육, 35(2), 265-276.
- 유희원, 함동철, 차현정, 김민석, 김희백, 유준희, 박현주, 김찬종, 최승언(2012). 달의 위상 변화에 대한 과학적 모형 구성 수업에서 나타나는 과학 영재들의 모형 생성 및 발달 과정. 영재교육연구, 22(2), 291-315.
- 윤혜경(2011). 초등 예비교사의 자기 모델 탐구 과정과 과학적 모델에 대한 이해 변화. 초등과학교육, 30(3), 353-366.
- 이신영, 김찬종, 최승언, 유준희, 박현주, 강은희, 김희백(2012). 소집단 상호작용에 따른 심장 내 혈액 흐름에 대한 소집단 모델 발달 유형과 추론 과정 탐색. 한국과학교육학회지, 32(5), 805-822. https://doi.org/10.14697/JKASE.2012.32.5.805
- 임성은, 최승언, 박창미, 김찬종(2020). 명시적-반성적 접근을 활용한 모델링 수업이 초등학생들의 메타모델링 지식에 미치는 영향 탐색. 한국과학교육학회지, 40(2), 127-140. https://doi.org/10.14697/JKASE.2020.40.2.127
- 조은진, 김찬종, 최승언(2017). 과학적 모델과 모델링에 대한 중등 과학 교사의 인식 탐색. 한국과학교육학회지, 37(5), 859-877. https://doi.org/10.14697/JKASE.2017.37.5.859
- 조혜숙, 남정희, 오필석(2017). 과학교육에서 모델 및 모델링에 대한 고찰: 메타모델링 지식을 중심으로. 한국과학교육학회지, 37(2), 239-252. https://doi.org/10.14697/JKASE.2017.37.2.0239
- 조혜숙, 남정희(2017). 과학교육에서 모델과 모델링 관련 국내 과학 교육 연구 동향 분석. 한국과학교육학회지, 37(4), 539-552. https://doi.org/10.14697/JKASE.2017.37.4.539
- 하윤희, 차현정, 신현정, 김찬종(2022). 예비 지구과학교사들의 기후변화 모델 평가 기준 탐색. 한국지구과학회지, 43(1), 210-223.
- 한문현, 김희백(2012). '먹이 그물과 먹이 피라미드' 모형구성에서 나타난 초등학생의 추론 유형. 초등과학교육, 31(1), 71-83.
- 한문현, 김희백(2017). 모형 구성 과정에서 나타나는 초등학생의 인지, 감정적 반박: 인식적 감정을 중심으로. 한국과학교육학회지, 37(1), 155-168. https://doi.org/10.14697/JKASE.2017.37.1.0155
- 한문현, 김희백(2018). 모형 구성 참여 양상에서 나타나는 내성적인 초등학생의 인식적 감정 구성. 한국과학교육학회지, 38(2), 171-186. https://doi.org/10.14697/JKASE.2018.38.2.171
- Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok- Na a ma n, R., Hofstein, A., Nia z, M., Treagust, D., & Tuan, H. l. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419.
- Baek, H., Schwarz, C., Chen, J., Hokayem, H., & Zhan, L. (2011). Engaging elementary students in scientific modeling: The MoDeLS fifth-grade approach and findings. Models and modeling: Cognitive tools for scientific enquiry, 195-218.
- Berla nd, L. K., & Reiser, B. J. (2009). Ma king sense of argumentation and explanation. Science Education, 93(1), 26-55.
- Bottcher, F., & Meisert, A. (2011). Argumentation in science education: A model-based framework. Science & Education, 20, 103-140.
- Campbell, T., Oh, P. S., & Neilson, D. (2012). Discursive Modes and Their Pedagogical Functions in Model-Based Inquiry (MBI) Classrooms. International Journal of Science Education, 34(15), 2393-2419.
- Campbell, T., Oh, P. S., & Neilson, D. (2013). Reification of five types of modeling pedagogies with model-based inquiry (MBI) modules for high school science classrooms. In M. S. Khine & I. M. Saleh (Eds.), Approaches and strategies in next generation science learning (pp. 106-126). Hershey, PA: IGI Global.
- Carlson, J., Daehler, K. R., Alonzo, A. C., Barendsen, E., Berry, A., Borowski, A., ... & Wilson, C. D. (2019). The refined consensus model of pedagogical content knowledge in science education. Repositioning Pedagogical Content Knowledge in Teachers' Knowledge for Teaching Science, 77-94.
- Clement, J. (1989). Learning via model construction and criticism. In Handbook of creativity (pp. 341-381). Springer.
- Clement, J. (2008). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordrecht: Springer Science & Business Media.
- Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268-291. https://doi.org/10.3102/0091732X07309371
- Erduran, S., & Duschl, R. A. (2004). Interdisciplinary characterizations of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40(1), 105-138.
- Forbes, C. T., Zangori, L., & Schwarz, C. V. (2015). Empirical validation of integrated learning performances for hydrologic phenomena: 3rd grade students' model driven explanation construction. Journal of Research in Science Teaching, 52(7), 895-921. https://doi.org/10.1002/tea.21226
- Ford, M. J. (2008). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92(3), 404 423.
- Fulmer, G. W., & Liang, L. L. (2013). Measuring model-based high school science instruction: Development and application of a student survey. Journal of Science Education and Technology, 22(1), 37-46. https://doi.org/10.1007/s10956-012-9374-z
- Giere, R. N., Bickle, J., & Mauldin, R. F. (2006). Understanding scientific reasoning (5th ed.). Belmont, CA: Thomson.
- Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Cham : Springer.
- Gouvea, J., & Passmore, C. (2017). Models of' versus 'models for. Science & Education, 26(1-2), 49-63. https://doi.org/10.1007/s11191-017-9884-4
- Halloun, I. A. (2006). Fundamental Tenets of Modeling Theory. Modeling Theory in Science Education, 1-32.
- Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352-381.
- Hmelo-Silver, C. E., Liu, L., Gra y, S., & Jorda n, R. (2015). Using representational tools to learn about complex systems: A tale of two classrooms. Journal of Research in Science Teaching, 52(1), 6-35. https://doi.org/10.1002/tea.21187
- Ingham, A. I., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13, 203-215.
- Jaber, L. Z., & Hammer, D. (2016). Learning to feel like a scientist. Science Education, 100(2), 189-220. https://doi.org/10.1002/sce.21202
- Johnson, S. K., & Stewart, J. (2002). Revising and assessing explanatory models in a high school genetics class: A comparison of unsuccessful and successful performance. Science Education, 86(4), 463-480. https://doi.org/10.1002/sce.10015
- Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387.
- Justi, R., & Van Driel, J. (2005). A case study of the development of a beginning chemistry teacher's knowledge about models and modelling. Research in Science Education, 35(2-3), 197-219.
- Kawasaki, K., Herrenkohl, L., & Yeary, S. A. (2004). Theory building and modeling in a sinking and floating unit: A case study of third and fourth grade students' developing epistemologies of science. International Journal of Science Education, 26(11), 1299-1324. https://doi.org/10.1080/0950069042000177226
- Khan, S. (2007). Model-Based Inquiries in Chemisty. Science Education, 91(6), 877-905. https://doi.org/10.1002/sce.20226
- KMK [Sekretariat der Standigen Konferenz der Kultusminister der Lander in der BRD]. (2005). Bildungsstandards im Fach (a) Biologie, (b) Chemie, (c) Physik fur den Mittleren Schulabschluss [Educational standards in (a) biology, (b) chemistry, (c) physics for middle school graduation]. Munchen/Neuwied, Germany: Wolters Kluwer.
- Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7-8), 751-773.
- Liu, L., & Hmelo-Silver, C. E. (2009). Promoting complex systems learning through the use of conceptual representations in hypermedia. Journal of Research in Science Teaching, 46(9), 1023-1040. https://doi.org/10.1002/tea.20297
- Liu, L., & Hmelo-Silver, C. E. (2010). Conceptual representation embodied in hypermedia: An approach to promoting knowledge co-construction. In M. S. Khine & I. M. Saleh (Eds.), New Science of Learning (pp. 341-356). NY: Springer.
- Major, C. H., & Savin-Baden, M. (2010). An introduction to qualitative research synthesis: Managing the information explosion in social science research. Routledge.
- Milne, C., & Otieno, T. (2007). Understanding engagement: Science demonstrations and emotional energy. Science Education, 91(4), 523-553. https://doi.org/10.1002/sce.20203
- Mittelstrass, J. (2005). Anmerkungen zum Modellbegriff [Annotations of the Model Term]. Modelle des Denkens: Streitgesprach in der Wissenschaftlichen Sitzung der Versammlung der Berlin--Brandenburgischen Akademie der Wissenschaften am 12. Dezember 2003, 65-67.
- Nastasi, B. K., & Clements, D. H. (1991). Research on cooperative learning: implications for practice. School Psychology Review, 20(1), 110-131.
- National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press.
- National Research Council. (2012). A framework for K-12 science education: practices, cross-cutting concepts, and core ideas. committee on a conceptual Framework for new K-12 science education standards. Washington DC: National Academy Press.
- NGSS Lead States (Ed.). (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
- Nobilt, G. W., & Hare, R. D. (1988). Meta-Ethnography: Synthesizing qualitative research: Practical issues. Journal of Advanced Nursing, 48(3), 271-278.
- Osborne, R. J., & Cosgrove, M. M. (1983). Children's conceptions of the changes of state of water. Journal of research in Science Teaching, 20(9), 825-838. https://doi.org/10.1002/tea.3660200905
- Park, S., & Chen, Y. C. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK): Examples from high school biology classrooms. Journal of Research in Science Teaching, 49(7), 922-941. https://doi.org/10.1002/tea.21022
- Passmore, C., Gouvea , J. S., & Giere, R. N. (2014). Models in science and in learning science: Focusing scientific practice on sense-making. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1171-1202). Dordrecht: Springer.
- Rea-Ramirez, M. A., Clement, J., & Nunez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In Model based learning and instruction in science (pp. 23-43). Dordrecht, The Netherlands: Springer.
- Schwarz, C. V., Reiser, B. J., Acher, A., Kenyon, L., & Fortus, D. (2012). Models: challenges in defining a learning progression for scientific modeling. In A. Alonzo & A. Gotwals (Eds.), Learning progressionsin science: current challenges and future directions (pp. 101-137). Rotterdam, The Nertherlands: Sense.
- Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654. https://doi.org/10.1002/tea.20311
- Shen, J., & Confrey, J. (2007). From conceptual change to transformative modeling: A case study of and elementary teacher in learning astronomy. Science Education, 91(6), 948-966.
- Stroupe, D. (2015). Describing "Science Practice" in learning settings. Science Education, 99(6), 1033-1040. https://doi.org/10.1002/sce.21191
- Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353-1368.
- van Driel, J. H., & Verloop, N. (1999). Teachers' knowledge of models and modeling in science. International Journal of Science Education, 21(11), 1141-1153. https://doi.org/10.1080/095006999290110
- van Driel, J. H., & Verloop, N. (2002). Experienced teachers' knowledge of teaching and learning of models and modeling in science education. International Journal of Science Education, 24(12), 1255-1272. https://doi.org/10.1080/09500690210126711
- Walsh, D., & Downe, S.(2004). Meta-sysnthesis method for qualitative research: A literature review. Journal of Advanced Nursing, 50(2), 204-211. https://doi.org/10.1111/j.1365-2648.2005.03380.x
- Windschitl, M., & Thompson, J. (2006). Transcending simple forms of school science investigation: The impact of preservice instruction on teachers' understandings of model-based inquiry. American Educational Research Journal, 43(4), 783-835.
- Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259