DOI QR코드

DOI QR Code

Exploring the Changes in Elementary Teachers' Modeling pPCK for Science Modeling Instructions Through Knowledge Exchange of the Refined Consensus Model

개선된 합의 모델(RCM)의 지식 교환을 통한 초등교사의 모델링 pPCK 변화 탐색

  • Received : 2023.12.28
  • Accepted : 2024.02.13
  • Published : 2024.02.29

Abstract

The purpose of this study was to explore changes in elementary teachers' modeling pPCK (personal PCK) resulting from knowledge exchange within the realms of PCK described in the Refined Consensus Model (hereafter RCM). For this purpose, a professional learning community (hereafter PLC) was established for three elementary school teachers to facilitate knowledge exchange specifically focused on science modeling instructions. The study then analyzed the CoRe (content representations) written by the research participants twice to explore any changes in modeling pPCK (personal PCK). In addition, the discourse shared by the participants in the PLC and the data from the in-depth interviews were also analyzed using grounded theory research methods. The results of the study showed that there was no significant change in knowledge of the science curriculum in elementary teachers' modeling pPCK, but there were changes in orientations toward teaching science, knowledge of students' understanding in science, knowledge of instructional strategies and representations, and knowledge of assessment of science learning. Furthermore, the analysis of PLC discourse and in-depth interviews showed that modeling instructions reflection (ePCK; enacted PCK) and educational research-based modeling cPCK (collective PCK) influenced these changes in teachers' modeling pPCK. Accordingly, this study suggests recommendations for pedagogical approaches aimed at improving teachers' modeling PCK.

본 연구는 개선된 합의 모델(RCM)의 세 가지 PCK 영역 간 지식 교환을 통해 초등교사의 모델링 pPCK(개인적 PCK)가 어떻게 변화되는지 탐색하였다. 이를 위해 초등교사 3인을 대상으로 한 전문적 학습공동체(PLC)에서 과학 모델링 수업에 관한 지식 교환이 이루어지도록 촉진한 뒤, 연구참여자가 두 차례 작성한 CoRe(내용 표상)를 분석하여 모델링 pPCK 변화 양상을 탐색하였다. 또한 PLC에서 연구참여자들이 나눈 담화, 심층 면담 자료를 근거 이론적 연구 방법을 활용하여 분석하였다. 연구 결과, 지식 교환으로 인해 초등교사의 모델링 pPCK 중 교육과정 지식에 있어서는 두드러진 변화가 없었으나 과학 교수 지향, 학생 이해에 대한 지식, 과학 수업 전략 지식 및 과학 평가에 대한 지식에 변화가 있었다. 또한 PLC 담화 및 심층 면담 분석을 통해 교사들의 이러한 모델링 pPCK 변화에는 모델링 수업 사례 성찰(ePCKR)과 교육 연구 기반 모델링 cPCK(집단적 PCK)가 영향을 미쳤음을 알 수 있었다. 연구 결과를 바탕으로 본 연구에서는 효과적인 교사의 모델링 PCK 개발을 위한 교육적 방법에 대해 논의하였다.

Keywords

Acknowledgement

이 논문은 2022년 대한민국 교육부와 한국연구재단의 인문사회분야 중견연구자지원사업의 지원을 받아 수행된 연구임(NRF-2022S1A5A2A01038760)

References

  1. Abd-El-Khalick, F., Boujaoude, S., Duschl, R., Lederman, N. G., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., & Tuan, H. l. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419.
  2. Abell, S. (2007). Research on science teacher knowledge. In S.K. Abell & N.G. Lederman (Eds.), Handbook of research on science education (pp. 1105-1149). Mahwah, NJ: Lawrence Erlbaum.
  3. Acher, A., Arca, M., & Sanmarti, N. (2007). Modeling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91(3), 398-418. https://doi.org/10.1002/sce.20196
  4. Akerson, V. L., Townsend, J. S., Donnelly, L. A., Hanson, D. L., Tira, P., & White, O. (2009). Scientific modeling for inquiring teachers network (SMIT'N): The influence on elementary teachers' views of nature of science, inquiry, and modeling. Journal of Science Teacher Education, 20(1), 21-40. https://doi.org/10.1007/s10972-008-9116-5
  5. Alonzo, A. C., Berry, A., & Nilsson, P. (2018). Capturing and representing the complexity of PCK in action. In A. Hume, R. Cooper, & A. Borowski (Eds.), Repositioning pedagogical content knowledge in teachers' professional knowledge. New York: Springer.
  6. Alonzo, A. C., Berry, A., & Nilsson, P. (2019). Unpacking the complexity of science teachers' PCK in action: Enacted and personal PCK. Repositioning pedagogical content knowledge in teachers' knowledge for teaching science, 273-288.
  7. Barendsen, E., & Henze, I. (2019). Relating teacher PCK and teacher practice using classroom observation. Research in Science Education, 49, 1141-1175. https://doi.org/10.1007/s11165-017-9637-z
  8. Campbell, T., Oh, P. S., & Neilson, D. (2013). Reification of five types of modeling pedagogies with model-based inquiry (MBI) modules for high school science cla ssrooms. In M. S. Khine & I. M. Sa leh (Eds.), Approaches and strategies in next generation science learning (pp. 106-126). Hershey, PA: IGI Global.
  9. Carlson, J., Daehler, K. R., Alonzo, A. C., Barendsen, E., Berry, A., Borowski, A., ... & Wilson, C. D. (2019). The refined consensus model of pedagogical content knowledge in science education. Repositioning pedagogical content knowledge in teachers' knowledge for teaching science, 77-94.
  10. Chan, K. K. H., & Hume, A. (2019). Towards a consensus model: Literature review of how science teachers' pedagogical content knowledge is investigated in empirical studies. Repositioning pedagogical content knowledge in teachers' knowledge for teaching science, 3-76.
  11. Cho, E., Kim, C., & Choe, S. (2017). An investigation into the secondary science teachers' perception on scientific models and modeling. Journal of the Korean Association for Science Education, 37(5), 859-877.
  12. Cho, H., & Nam, J. (2017). Analysis of trends of model and modeling-related research in science education in korea. Journal of the Korean Association for Science Education, 37(4), 539-552.
  13. Cho, H., Nam, J., & Oh, P. (2017). A review of model and modeling in science education: Focus on the metamodeling knowledge. Journal of the Korean Association for Science Education, 37(2), 239-252.
  14. Clement, J. J. (1989). Learning via model construction and criticism. In G. Glover & R. Ronning, C. Reynolds (Eds.), Handbook of creativity: Assessment, theory and research (pp. 341-381). New York: Plenum.
  15. Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology, 13(1), 3-21. https://doi.org/10.1007/BF00988593
  16. Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design: Choosing among five approaches. Sage publications.
  17. Davis, E. A. (2004). Knowledge integration in science teaching: analysing teachers' knowledge development. Research in Science Education, 34(1), 21-53. https://doi.org/10.1023/B:RISE.0000021034.01508.b8
  18. Deng, Z. (2007). Transforming the subject matter: examining the intellectual roots of pedagogical content knowledge. Curriculum Inquiry, 37(3), 279-295. https://doi.org/10.1111/j.1467-873X.2007.00386.x
  19. Dogan, S., Pringle, R., & Mesa, J. (2015). The impacts of professional learning communities on science teachers' knowledge, practice and student learning: A review. Professional Development in Education.
  20. Duschl, R. (2008). Science education in three-part harmony: Balancing conceptual, epistemic, and social learning goals. Review of Research in Education, 32(1), 268-291.
  21. Fulmer, G. W., & Liang, L. L. (2013). Measuring model-based high school science instruction: Development and application of a student survey. Journal of Science Education and Technology, 22(1), 37-46. https://doi.org/10.1007/s10956-012-9374-z
  22. Gess-Newsome, J. (1999). Pedagogical content knowledge: An introduction and orientation. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 3-20). Dordrecht: Kluwer Academic.
  23. Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK Summit. In A. Berry, P. J. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 28-42). New York: Routledge.
  24. Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses?. International Journal of Science Education, 20(1), 83-97. https://doi.org/10.1080/0950069980200106
  25. Glaser, B. & Strauss, A. (1967). The discovery of grounded theory: Strategies for qualitative research, New York: Aldine de Gruyter.
  26. Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and teacher education. New York: Teachers College Press.
  27. Halloun, I. A. (2007). Mediated modeling in science education. Science & Education, 16(7-8), 653-697.
  28. Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352-381. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J
  29. Henze, I., van Driel, J. H., & Verloop, N. (2008). Development of experienced science teachers' pedagogical content knowledge of models of the solar system and the universe. International Journal of Science Education, 30(10), 1321-1342.
  30. Hume, A., & Berry, A. (2011). Constructing CoRes-a strategy for building PCK in pre-service science teacher education. Research in Science Education, 41(3), 341-355.
  31. Ingham, A. I., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13, 203-215. https://doi.org/10.1080/0950069910130207
  32. Jeong, E., Kwak, Y., & Lee, K. (2023). A case study of school-level professional learning community using protocol for science inquiry class. The Korean Society of Biology Education, 51(2), 220-235.
  33. Johnson, S. K., & Stewart, J. (2002). Revising and assessing explanatory models in a high school genetics class: A comparison of unsuccessful and successful performance. Science Education, 86(4), 463-480. https://doi.org/10.1002/sce.10015
  34. Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142
  35. Justi, R., & Van Driel, J. (2005). A case study of the development of a beginning chemistry teacher's knowledge about models and modelling. Research in Science Education, 35(2-3), 197-219. https://doi.org/10.1007/s11165-004-7583-z
  36. Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905. https://doi.org/10.1002/sce.20226
  37. Kim, H., Lim, C., & Lee, K. (2023). Composition and attributes of modeling instructions and factors of teacher competence in elementary science classes: A qualitative meta-analysis. Journal of Korean Elementary Science Education 42(3), 434-454.
  38. Kind, V. (2009). Pedagogical content knowledge in science education: perspectives and potential for progress. Studies in science education, 45(2), 169-204. https://doi.org/10.1080/03057260903142285
  39. Kind, V. (2017). Development of evidence-based, student-learning-oriented rubrics for pre-service science teachers' pedagogical content knowledge. International Journal of Science Education, 1-33.
  40. Koponen, I. (2007). Models and modelling in physics education: a critical re-analysis of philosophical underpinnings and suggestions for revisions. Science and Education, 16(7-8), 751-773. https://doi.org/10.1007/s11191-006-9000-7
  41. Krauss, S., Brunner, M., Kunter, M., Baumert, J., Blum, W., Neubrand, M., & Jordan, A. (2008). Pedagogical content knowledge and content knowledge of secondary mathematics teachers. Journal of educational psychology, 100(3), 716-725.
  42. Kwak, Y. (2022). Teacher and qualitative research: Episteme and Phronesis. Paju: Kyoyookgwahaksa
  43. Lee, K., Jeong, E., & Kwak, Y. (2022). Exploring the applicability of PLC protocol for enhancing science teachers' teaching expertise on inquiry class. Journal of the Korean Association for Science Education, 42(4), 439-448. https://doi.org/10.14697/JKASE.2022.42.4.439
  44. Loughran, J. J., Berry, A., & Mulhall, P. (2004). In search of pedagogical content knowledge in science: Developing ways of articulating and documenting professional practice. Journal of Research in Science Teaching, 41(4), 370-391.
  45. Loughran, J., Berry, A., & Mulhall, P. (2006). Understanding and developing science teachers' pedagogical content knowledge. Dordrecht: Sense Publishers.
  46. Loughran, J., Gunstone, R., Berry, A., Milroy, P., & Mulhall, P. (2001). Documenting science teachers' pedagogical content knowledge through PaP-eRs. Reserch in Science Education, 31(2), 289-307. https://doi.org/10.1023/A:1013124409567
  47. Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical content knowledge for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 95-132). Dordrecht: Kluwer Academic.
  48. Marshall, C., & Rossman, G. B. (2014). Designing qualitative research. Sage publications.
  49. Miller, E., Manz, E., Russ, R., Stroupe, D., & Berland, L. (2018). Addressing the epistemic elephant in the room: Epistemic agency and the next generation science standards. Journal of Research in Science Teaching, 55(7), 1053-1075. https://doi.org/10.1002/tea.21459
  50. Ministry of Education(MOE). (2015). Science curriculum. notification No. 2015-74. Sejong: Ministry of Education.
  51. Ministry of Education(MOE). (2022). Science curriculum. notification No. 2022-33. Sejong: Ministry of Education.
  52. Mulholland, J., & Wallace, J. (2005). Growing the tree of teacher knowledge: Ten years of learning to teach elementary science. Journal of Research in Science Teaching, 42(7), 767-790. https://doi.org/10.1002/tea.20073
  53. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  54. Nelson, M. M., & Davis, E. A. (2012). Preservice elementary teachers' evaluations of elementary students' scientific models: an aspect of pedagogical content knowledge for scientific modeling. International Journal of Science Education, 34(12), 1931-1959.
  55. NGSS Lead States (Ed.). (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
  56. Nilsson, P., & Loughran, J. (2012). Exploring the development of pre-service elementary teachers' pedagogical content knowledge. Journal of Science Teacher Education, 23(7), 699-721.
  57. Oh, P. (2009). Preservice elementary teachers' perceptions on models used in science and science education. Journal of Korean Elementary Science Education, 28(4), 450-466.
  58. Park, S., & Chen, Y.-C. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK): Examples from high school biology classrooms. Journal of Research in Science Teaching, 49(7), 922-941.
  59. Park, S., & Oliver, J. S. (2008a). National Board Certification (NBC) as a catalyst for teachers' learning about teaching: The effects of the NBC process on candidate teachers' PCK development. Journal of Research in Science Teaching, 45(7), 812-834. https://doi.org/10.1002/tea.20234
  60. Park, S., & Oliver, J. S. (2008b). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261-284. https://doi.org/10.1007/s11165-007-9049-6
  61. Park, Y., Kim, M., & Chang, J. (2018). A study on the development and applicability of the curriculum literacy protocol for the professional learning community. Journal of Education & Culture, 24(5), 31-56. https://doi.org/10.24159/joec.2018.24.5.31
  62. Rosenkranzer, F., Horsch, C., Schuler, S., & Riess, W. (2017). Student teachers' pedagogical content knowledge for teaching systems thinking: Effects of different interventions. International Journal of Science Education, 1-20.
  63. Roth, K. J., Garnier, H. E., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. I. Z. (2011). Videobased lesson analysis: Effective science PD for teacher and student learning. Journal of Research in Science Teaching, 48(2), 117-148. https://doi.org/10.1002/tea.20408
  64. Schwarz, C. V. (2002). Is there a connection? The role of meta-modeling knowledge in learning with models. In P. Bell, R. Stevens, & T. Satwicz (Eds.), Keeping learning complex: The Proceedings of the Fifth International Conference of the Learning Sciences (ICLS). Mahwah, NJ: Erlbaum.
  65. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654.
  66. Schwarz, C., & Gwekwerere, T. (2007). Using a guided inquiry and modeling instructional framework to support preservise K-8 science teaching. Science Education, 91(1), 158-186. https://doi.org/10.1002/sce.20177
  67. Settlage, J. (2013). On acknowledging PCK's shortcomings. Journal of Science Teacher Education, 24(1), 1-12. https://doi.org/10.1007/s10972-012-9332-x
  68. Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-22. https://doi.org/10.17763/haer.57.1.j463w79r56455411
  69. Stylianidou, F., Boohan, R., & Ogborn, J. (2005). Science teachers' transformations of the use of computer modeling in the classroom: Using research to inform training. Science Education, 89(1), 56-70. https://doi.org/10.1002/sce.20043
  70. Suk, Y., & Yoon, H. (2022). Analysis of elementary students modeling using the globe on the cause of seasonal change. Journal of Korean Elementary Science Education, 41(4), 673-689.
  71. Uhm, J., & Kim, H. (2020). Changes in teaching practices of elementary school teachers in scientific modeling classes: Focused on modeling pedagogical content knowledge (PCK). Journal of the Korean Association for Science Education, 40(5), 543-563.
  72. Van Driel, J. H. (2014). Professional learning of science teachers. In C. Bruguiere, A. Tiberghien, & P. Clement (Eds.), Topics and trends in current science education (pp. 139-156). Dordrecht: Springer.
  73. Windschitl M., Thompson J., & Braaten M. (2008). Beyond the scientific method: Model-Based Inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259
  74. Yoon, H. (2011). Pre-service elementary teachers' inquiry on a model of magnetism and changes in their views of scientific models. Journal of Korean Elementary Science Education, 30(3), 353-366.
  75. Yu, H., Ham, D., Cha, H., Kim, M., Kim, H., Yoo, J., Park, H., Kim, C., & Choe, S. (2012). Model creation and model developing process of science gifted students in scientific model constructing class for phase change of the moon. Journal of Gifted/Talented Education, 22(2), 291-315. https://doi.org/10.9722/JGTE.2012.22.2.291