DOI QR코드

DOI QR Code

Elementary Students' Creativity Appear in Small Group Interactions During Model-Based Classrooms on Terraforming

테라포밍에 대한 과학적 모델링 수업에서 소그룹 상호작용 중 발현되는 초등학생의 창의성

  • Received : 2020.09.21
  • Accepted : 2020.12.07
  • Published : 2020.12.31

Abstract

The purpose of the study is to find creativity factors of students in the process of small group modeling and relate them to the types of interactions among students. In order to capture students' detailed interactions, this study was conducted as an 'essential case study' through qualitative analysis. We have developed the modules of nine lessons about terraforming, and they were used in an actual classroom. In order to understand the creativity of the students in the process of modeling, students' discourses and interview data were analyzed using 19 creative factors or abilities. The findings are as follows. Frequently found creativity factors are Elaboration, Evaluation, Visualization, Resist premature closer, Originality, Analysis and Concentration. And students' interactions that affect students' creativity in the process of modeling can be classified into four categories: Suggestion, Agreement, Questioning, Refutation, and Conversion. Through each interaction, students demonstrated the process of expressing and modifying their own thoughts and ideas in the modeling process. The findings of the study suggest that it is important to the teachers to understand types of interactions among students and the relationship between the types of interaction and creativity factors for students' creative modeling in modeling-based learning.

본 연구는 학생들의 모델링 과정에서 나타나는 창의성을 사회적 구성주의 관점에서 사회적 상호작용을 통해 학습자가 구성할 수 있는 인지적 능력으로 보고, 이것이 성인의 지도보다는 학습자끼리 서로 상호작용할 때 더 활성화 될 수 있음에 주목하였다(Vygotsky, 1978). 이에 따라 모델링 과정에서 나타나는 학생들의 창의성과 그것에 영향을 미치는 소그룹 상호작용의 특징에 대하여 질적 분석을 통한 본질적 사례연구를 수행하였다. 연구자는 실제 수업에 활용할 9차시의 모듈을 개발하였다. 연구 참여자는 한국의 4학년 초등학생 24명(남 12명, 여 12명)이다. 연구자는 수업자 및 관찰자로서 연구에 참여했으며, 수업 동영상 자료와 녹음 자료, 학생 면담 녹음 자료, 활동지 등의 자료를 수집하였다. 창의성의 수준은 'Mini-C' 창의성(Beghetto & Kaufman, 2007)을 기준으로 하였으며, 학생들의 창의성 분석을 위하여 Davis, Rimm & Siegle(2010)가 제시한 19가지 창의적 능력을 참고하였다. 연구 결과, 개인 모델링 과정에서 주로 나타난 학생들의 창의성은 정교화, 평가, 시각화, 성급한 결론의 유보, 독창성, 분석, 집중 등이었다. 또한 모델링 과정에서 학생들의 창의성에 영향을 주는 소그룹 상호작용은 '제안', '동의', '질문', '반박', '전환'의 5가지로 분류할 수 있었다. 각각의 상호작용을 통해 학생들은 모델링 과정에서 자신만의 생각과 아이디어를 표현하고, 수정하는 과정을 보여주었다. 특히 어린 학생들임에도 불구하고, 자신의 개인 모델을 무조건적으로 반영하기 보다는 다양한 창의적 능력의 사용과 합의를 통해 더 나은 그룹 모델을 형성하고자 하였다. 이러한 점은 앞으로 과학적 모델링 연구에서 학생들의 창의성에 더욱 주목해야 할 필요성을 보여준다.

Keywords

References

  1. Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in organizational behavior, 10(1), 123-167.
  2. Beech, M. (2009). Terraforming: The Creating of Habitable Worlds. NY: Springer New York.
  3. Beghetto, R. A., & Kaufman, J. C. (2007). Toward a broader conception of creativity: A case for "mini-c" creativity. Psychology of Aesthetics, Creativity, and the Arts, 1(2), 73-79. https://doi.org/10.1037/1931-3896.1.2.73
  4. Campbell, T., Oh, P. S., & Neilson, D. (2012). Discursive Modes and Their Pedagogical Functions in Model-Based Inquiry (MBI) Classrooms. International Journal of Science Education, 34(15), 2393-2419. https://doi.org/10.1080/09500693.2012.704552
  5. Clement, J. (1989). Learning via model construction and criticism. In Handbook of creativity (pp. 341-381). Springer.
  6. Csikszentmihalyi, M. (1996). The creative personality. Psychology today, 29(4), 36-40.
  7. Csikszentmihalyi, M. (1996). Flow and the psychology of discovery and invention. New York: Harper Collins.
  8. Daniels‐McGhee & Davis, G. A. (1994). The imagery‐creativity connection. The Journal of Creative Behavior, 28(3), 151-176. https://doi.org/10.1002/j.2162-6057.1994.tb01189.x
  9. Davis, G. A., Rimm, S, B., & Siegle, D. (2010). Education of the Gifted and Talented(6th edition). Pearson.
  10. Einstein, A., & Infeld, L. (1966). The Evolution of Physics. New York: Simon and Schuster.
  11. Gilbert, J. K., & Afonso, A. S. (2015). Lifelong Learning: Approaches to Increasing the Understanding of Chemistry by Everybody. Chemistry Education: Best Practices, Opportunities and Trends, 123-148.
  12. Gilbert, J. K., Boulter, C., & Rutherford, M. (1998). Models in explanations, Part 1: Horses for courses? International Journal of Science Education, 20(1), 83-97. https://doi.org/10.1080/0950069980200106
  13. Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Switzerland: Springer.
  14. Guilford, J. (1971). Some misconceptions regarding measurement of creative talents. The Journal of Creative Behavior.
  15. Halloun, I. A. (2006). Fundamental Tenets of Modeling Theory. Modeling Theory in Science Education, 1-32.
  16. Horst, S. (1993). Learning physics by making models. Physics Education, 28(2), 102-106. https://doi.org/10.1088/0031-9120/28/2/007
  17. Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change. Interactive Learning Environments, 13(1-2), 15-37. https://doi.org/10.1080/10494820500173292
  18. Justi, R. (2006). La ensenanza de ciencias basada en la elaboracion de modelos. Ensenanza de las ciencias: Revista de investigacion y experiencias didácticas, 24(2), 173-184. https://doi.org/10.5565/rev/ensciencias.3798
  19. Kang, E., Choe, S., Kim, C., Kim, H., Lee, S., Park, H., Yoo, J. (2012). Exploring the Patterns of Group model Development about Blood Flow in the Heart and Reasoning Process by Small Group Interaction. Journal of the Korean Association for Research in Science Education, 32(5), 805-822. https://doi.org/10.14697/jkase.2012.32.5.805
  20. Khan, S. (2007). Model‐based inquiries in chemistry. Science Education, 91(6), 877-905. https://doi.org/10.1002/sce.20226
  21. Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7-8), 751-773. https://doi.org/10.1007/s11191-006-9000-7
  22. Martinez, J. M. O., & del Mar Aragon-Mendez, M. (2009). Contribucion del aprendizaje con analogias al pensamiento modelizador de los alumnos en ciencias: marco teorico. Ensenanza de las ciencias: Revista de investigacion y experiencias didácticas, 27(2), 195-208. https://doi.org/10.5565/rev/ensciencias.3731
  23. McComas, W. F. (1998). The principal elements of the nature of science: Dispelling the myths. In The nature of science in science education (pp. 53-70). Springer. Dordrecht.
  24. Ministry of Education (2015). 2015 revised national science curriculum. Sejong: Ministry of Education.
  25. Morgan, M. S. & Morrison, M. (1999). Models as mediators: Perspectives on natural and social science (Vol. 52), (pp. 10-37). New York: Cambridge University Press.
  26. Mozzer, N. B., Justi, R., & Costa, P. P. (2011). Students' analogical reasoning when participating in modelling-based teaching activities. Paper presented at the Ebook proceedings of the ESERA 2011 conference-science learning and citizenship. Universite de Lyon, Lyon.
  27. Nersessian, N. J. (2008). Mental modeling in conceptual change. International handbook of research on conceptual change, 391-416.
  28. Nersessian, N. J. (2010). Creating scientific concepts: MIT press.
  29. Osborn, A. F. (1953). Applied imagination. Oxford, England: Scribner'S.
  30. Park, K., Ryu, J., Park, I., Bang, S., Yuk, K., Yoon, Y., Lee, M., Lee, S., Lee, J., Jeon, M., Jeon, Y., Cho, S., Jin, S. (2014). Gifted Education at a Glance. Seoul: Hakjisa Co.
  31. Rea-Ramirez, M. A., Clement, J., & Nunez-Oviedo, M. C. (2008). An instructional model derived from model construction and criticism theory. In Model based learning and instruction in science (pp. 23-43). Springer.
  32. Reitman, W. R. (1965). Cognition and thought: an information processing approach. Oxford, England: Wiley.
  33. Rogers, C. R. (1954). Toward a theory of creativity. ETC: A Review of General Semantics, 11(4), 249-260.
  34. Sawyer, K. (2011). Extending Sociocultural Theory to Group Creativity. Vocations and Learning, 5(1), 59-75. https://doi.org/10.1007/s12186-011-9066-5
  35. Torrance, E. P. (1962). Guiding creative talent. Englewood Cliffs, NJ, US: Prentice-Hall, Inc.
  36. Torrance, E. P. (1972). Can we teach children to think creatively? The Journal of Creative Behavior, 6(2), 114-143. https://doi.org/10.1002/j.2162-6057.1972.tb00923.x
  37. Torrance, E. P. (1979). An instructional model for enhancing incubation. The Journal of Creative Behavior, 13(1), 23-35. https://doi.org/10.1002/j.2162-6057.1979.tb00186.x
  38. Torrance, E. P. (1980). Creativity and style of learning and thinking characteristics of adaptors and innovators. Creative Child & Adult Quarterly. 5(2), 80-85.
  39. Torrance, E. P. (1988). The nature of creativity as manifest in its testing. The nature of creativity: Contemporary psychological perspectives, 43-75.
  40. Voss, J. F., & Post, T. A. (1988). On the solving of ill-structured problems. In M. T. H. Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. 261-285). Lawrence Erlbaum Associates, Inc.
  41. Vygotsky, L. (1978). Interaction between learning and development. Readings on the development of children, 23(3), 34-41.
  42. Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model‐based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967. https://doi.org/10.1002/sce.20259
  43. Yu, H., Ham, D., Cha, H., Kim, M., Kim, H., Yoo, J., Park, H., Kim, C., Choe, S. (2012). Model Creation and Model Developing Process of Science Gifted Students in Scientific Model Constructing Class for Phase Change of the Moon. The Korean Society for the Gifted and Talented, 22(2), 291-315.