• Title/Summary/Keyword: 과학수업설계

Search Result 320, Processing Time 0.032 seconds

Analysis of Noticing Characteristics Presented in Elementary Pre-service Teachers' Self-reflection Journals on the Science Class (초등 예비교사의 과학수업 성찰지에 나타난 노티싱 특성 분석)

  • Yoon, Heojeong
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.4
    • /
    • pp.754-770
    • /
    • 2022
  • For teachers, noticing refers to paying attention to something, indicating they interpret it and how they are willing to react to it in the context of their own instruction. Analysis of noticing features enables us to understand the overall characteristics of the teacher's lesson design, practice, and reflection, which are core agents in the educational design and implementation. This can also be taken to be the basis of education design for competency reinforcement for teachers. Therefore, in this study, the characteristics of noticing shown in teachers' reflections after class design and demonstration were identified. For this purpose, the self-reflection journals of 106 elementary pre-service teachers enrolled in the College of Education in Gangwon-do were analyzed. In particular, the journals were gathered that were written after the demonstration dealing with the change of gas volume by temperature in science class. After designing a noticing analysis frame consisting of the five dimensions 'agent', 'stage', 'topic', 'focus', and 'stance', the frequency and ratio of noticing by each dimension's components were derived. The frequency and ratio of noticing for the dimension of 'focus' were analyzed for the dimensions of 'stage' and 'topic'. The results of the study were as follows. For the dimension of 'agent', the frequency of teacher and student was the highest, and for the dimension of 'stage', inquiry activity was the highest. For the 'topic' dimension, class design according to the teaching strategy appeared most frequently, and in the 'focus' dimension, the cases that did not specify the goal of the class and the competencies to be achieved by the students appeared most frequently. In the 'stance' dimension, description showed the highest frequency. From the analysis of how the 'focus' changes according to the 'stage' and 'topic', it was found that a characteristic focus appeared for each component of the dimension. From these results, the implications of the noticing characteristics of pre-service teachers for the design and implementation of teacher education were discussed.

An Implementation of Web-based Instructional Design System for University Instructors (대학교수자용 웹기반 수업설계 시스템)

  • Kan, Jin-Sook;Lee, Ching-Chan
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.222-232
    • /
    • 2010
  • The purpose of this investigation was to help university professors for making their systematic design of instruction easily and scientifically. To increase of learner's studying ability, the systemic instructional design is imperative. But most of university professors could not get proper experiences to know develop instructional design system, specially to develop web-based system. This new system made it possible to select the proper instructional methods and the media type suitable for the corresponding data. And also every professor who is involved to know this system, can put informations for the target learners, learning contents and learning objectives, and present the proper media types and the many different conditions in the process of the each instructional design process. Finally, the results of the learner's study will be effective and professors showed their positive opinions for the using of the system.

The Analysis of Difficulties of Pre-service Teachers in Process of Instructional Design based on Programming (프로그래밍 기반 수업 설계 과정에서 예비 교사의 어려움 분석)

  • Kim, Seong-Won;Lee, Youngjun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.209-210
    • /
    • 2019
  • 정보 교과가 아닌 타 교과에서 교육 도구로써 프로그래밍의 교육적 효과가 증명됨에 따라 프로그래밍을 수업에 도입하기 위한 다양한 연구가 진행되었다. 김성원과 이영준(2017)은 TPACK 이론을 도입하여, 테크놀로지 도구로 프로그래밍 언어를 도입하고, 예비 교사의 수업 전문성 향상을 위한 프로그래밍 기반 TPACK 교육 프로그램을 개발하였다. 개발한 교육 프로그램을 수업에 도입하였지만, 예비 교사는 여러 가지 어려움을 느끼고 있었다. 따라서 본 연구에서는 프로그래밍 기반 TPACK 교육 프로그램을 개선하기 위하여 예비 교사에게 선행 연구에서 개발한 교육 프로그램을 적용하고, 프로그래밍 기반 수업 설계를 하는 과정에서 예비 교사가 겪는 어려움을 조사하였다. 연구 결과, 예비 교사는 예비 교사는 프로그래밍 학습, 프로그램의 설계 및 구현, 교과 특성에 맞는 프로그램 개발, 프로그래밍 언어의 한계로 프로그래밍 기반 수업 설계에서 어려움을 겪고 있었다. 향후 연구에서는 이러한 어려움을 해결하기 위한 교육 프로그램 개선을 진행하고, 개선한 교육 프로그램을 예비 교사에게 적용하여 효과를 검증하고자 한다.

  • PDF

Internalization of Constructivistic Science Teaching of Science Teachers Participating in a Collaborative Program Between Teachers and Researchers (교사-연구자간 협력적 연수 프로그램에 참여한 과학 교사의 구성주의적 수업에 대한 내면화 과정)

  • Lee, Eun-Jin;Kim, Chan-Jong;Lee, Sun-Kyung;Jang, Shin-Ho;Kwon, Hong-Jin;Yu, Eun-Jeong
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.854-869
    • /
    • 2007
  • In this study, we investigated secondary science teachers' internalization of constructivistic science teaching who participated in a collaborative program between teachers and researchers designed by researchers according to constructivist views. The program consisted of lecture, workshop, and small group activities. New trends in science education and framework for science teaching were introduced during lectures, and understanding about the framework were deepened by analyzing school science classes recorded during workshops. In small group activities, participating teachers and researchers cooperated to design science lesson plans using science teaching frameworks. Five secondary science teachers participated in collaborative workshops. Collaborative programs were video-taped. Semi-structured interviews were conducted before and after workshops. All data recorded were transcribed and analyzed. In the process of internalization, participating teachers attended on different parts. Various and discernable factors such as there own background, beliefs, values, and school context produced tensions with or facilitated internalization of constructivistic science teaching. Teaching experiences and student understanding affected teachers' lesson planning activities. Teachers also showed different understandings on inquiry, application, and model from the framework, and they interpret those concepts in the framework based on their prior understanding. They perceived that too much content should be dealt within relatively limited time. Therefore, they tended to separate science class into two parts when developing science lessons: explaining science content by lecture and science laboratory as a constructivistic activity. The results of the study provide meaningful implications to the constructivist teacher education and professional development.

The Self-Perception and Science Teaching Implementation of Elementary School Teacher Aiming for Student-centered Inquiry Classes -Focusing on RTOP Analysis of the Elementary School 'Temperature and Heat' Unit- (학생 중심 탐구수업을 지향하는 초등교사의 과학수업에 대한 자기인식과 실행 -초등학교 '온도와 열' 단원에 대한 RTOP 분석을 중심으로-)

  • Chaeyeon Shin;Hyojoon Kim
    • Journal of Science Education
    • /
    • v.47 no.1
    • /
    • pp.88-106
    • /
    • 2023
  • This study aims to investigate the disparity between the teacher's perception of student-centered inquiry classes and the actual implementation of such practices. Specifically, we compared an elementary science teacher's self-perception of her science lessons with the observers' evaluation using the Reformed Teaching Observation Protocol (RTOP) of the "Temperature and Heat" unit. Research data were collected through classroom teaching survey, interview, and science lessons video which were analyzed using the RTOP. As a result of the study, the teacher recognized that she was practicing inquiry-oriented/student-centered classes, but the results judged by the RTOP score were found to be transitional/student-affected classes by a slight difference. Teacher H planned and practiced classes based on a high understanding and content knowledge of the curriculum and created a science classroom culture that promotes active interaction among students as well as students and teachers. However, teacher-led aspects were still emphasized in teaching design and implementation, and the project theme and content were inappropriate to improve the quality of students' science inquiry experience. In the end, the slight difference between teacher's perception of inquiry-oriented/student-centered classes and actual implementation is related to how student-centered "lesson design" is and how to plan and implement classes supported by "procedural knowledge" for students' experience in the science inquiry process. These results indicate that the teacher's self-evaluation alone is not enough to determine whether the teacher's intentions and efforts are actually being implemented, and that it is necessary to conduct objective analysis, evaluation, and discuss the results of science classes by the external observers.

The Characteristics of 'Scientific Participation and Action' Lessons designed by Preservice Teachers: Focusing on the Analysis of Lesson Plans about N oise Issue (초등 예비교사들이 설계한 '과학적 참여와 실천' 수업의 특징 - 소음 문제에 대한 교수학습 과정안 분석을 중심으로 -)

  • Chang, Jina;Na, Jiyeon
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.1
    • /
    • pp.136-147
    • /
    • 2024
  • It has recently be emphasized in science education that lessons that can develop "scientific participation and action" should be implemented to scientifically recognize various problems and respond to them as well as risks that occur in real life. This study aims to analyze the characteristics of scientific participation and action lessons as perceived by the preservice primary school teachers. To do that, the researchers collected and analyzed the lesson plans designed by the preservice teachers based on the achievement standard related to noise for grades 3-4 in 2022 revised science curriculum. Focusing on the stages of "problem recognition," "data collection and analysis," and "implementation and sharing," the results identity the four main characteristics as problem-solving activity, inquiry activity, investigative activity, and activity that encourages practical actions. The two or three features were found to be combinated in a lesson depending on its context. In some cases, only one feature was seen in a lesson. Based on the results, educational implications were discussed in terms of the teaching and learning methods and teacher education for implementing scientific participation and action.

The Effects of the 'Solar system and Stars' Unit Using Backward Design 2.0 on Science Academic Achievement, Performance Evaluation, and Science Class Satisfaction (백워드 설계 2.0을 활용한 '태양계와 별' 단원 수업이 과학 학업성취도와 수행평가 및 과학 수업 만족도에 미치는 효과)

  • Son, Junho;Kim, Hyunry
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.2
    • /
    • pp.147-161
    • /
    • 2020
  • In order to help elementary students understand the astronomical unit in depth, this study applied backward design 2.0 to check the effect on students' science academic achievement, performance evaluation, and science class satisfaction. As a result of the study, there was no statistically significant difference in the science achievement test, but the average score of the experimental group has improved. As a result of the performance evaluation test, there was a statistically significant difference because the feedback was well provided through the process-focused assessment and it helped in-depth understanding. As a result of the science class satisfaction test, there was a statistically significant difference in the areas of science curriculum and peer relation except for the science teacher area. This is because a differentiated science curriculum was designed through analysis of achievement standards, and various teaching methods of student-centered were implemented to reach achievement standards. We hope this study will focus on the impact of backward design 2.0 on learners in elementary science classes and help find ways to effectively apply backward design 2.0 in the field.

Students' Perception of Scratch Program using High School Science Class (스크래치를 활용한 고등학교 과학 수업에 대한 학생 인식)

  • Noh, Hee Jin;Paik, Seoung Hye
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.1
    • /
    • pp.53-64
    • /
    • 2015
  • This research was performed of high school science classes. These science classes progressed by using Scratch, and surveyed students' perception after finishing each class. This research was conducted of male students who want to choose department of natural science in the next grade. Those classes are consisted of four classes. This study produced a journal, and contained expressions of their thinking and feeling based on experiences during attending classes and projects. Consequently, that journal was analyzed in view of understanding and perception of Scratch using science classes, and it was also included of utilizing Scratch program. Research shows following three conclusions. First, students preferred Scratch using class to general one. They attend more active with high interest, and they felt senses of accomplishment while they make output by themselves. Second, their studies passed through three stages. These are problem perception, problem solving, and producing. Problem solving stage is especially complicated and difficult stage to students. This stage is consisted of Scratch side and Science side. Scratch side has Design and applying process, and Science side has data gathering and analyzing. Students' comprehension of scientific knowledge is increased and is preserved long time through this stage. Last, students had a hard time using Scratch. Because, it is the first time to them to use that program. Therefore, we deemed that they needed to start this kind of experience at lower grade than they are now, such as middle school stage. It is expected that this type of classes are getting more expanded and more populated as a part of students' core ability.

The Effect of Engineering Design Based Ocean Clean Up Lesson on STEAM Attitude and Creative Engineering Problem Solving Propensity (공학설계기반 오션클린업(Ocean Clean-up) 수업이 STEAM태도와 창의공학적 문제해결성향에 미치는 효과)

  • DongYoung Lee;Hyojin Yi;Younkyeong Nam
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.79-89
    • /
    • 2023
  • The purpose of this study was to investigate the effects of engineering design-based ocean cleanup classes on STEAM attitudes and creative engineering problem-solving dispositions. Furthermore, during this process, we tried to determine interesting points that students encountered in engineering design-based classes. For this study, a science class with six lessons based on engineering design was developed and reviewed by a professor who majored in engineering design, along with five engineering design experts with a master's degree or higher. The subject of the class was selected as the design and implementation of scientific and engineering measures to reduce marine pollution based on the method implemented in an actual Ocean Clean-up Project. The engineering design process utilized the engineering design model presented by NGSS (2013), and was configured to experience redesign through the optimization process. To verify effectiveness, the STEAM attitude questionnaire developed by Park et al. (2019) and the creative engineering problemsolving propensity test tool developed by Kang and Nam (2016) were used. A pre and post t-test was used for statistical analysis for the effectiveness test. In addition, the contents of interesting points experienced by the learners were transcribed after receiving descriptive responses, and were analyzed and visualized through degree centrality analysis. Results confirmed that engineering design in science classes had a positive effect on both STEAM attitude and creative engineering problem-solving disposition (p< .05). In addition, as a result of unstructured data analysis, science and engineering knowledge, engineering experience, and cooperation and collaboration appeared as factors in which learners were interested in learning, confirming that engineering experience was the main factor.

An Activity-based Instructional Design For Search Algorithm Expression of Elementary Students (초등학생의 알고리즘 표현을 위한 활동 중심의 검색 알고리즘 수업 설계)

  • Han, Byoungrae;Gu, Jungmo;Song, Taeok
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.2
    • /
    • pp.161-170
    • /
    • 2016
  • Currently computer education has been emphasized improving thinking skill instead of practical education of applied software. There are various studies that are to teach algorithm with visualization learning materials or activitives-centered unplugged class. However, algorithm classes for elementary school have various difficulties. One of the reasons is insufficient learning materials and teaching methods. Therefore we designed a activities-centered algorithm class for elementary school students. We hope this study will contribute to the study of algorithm classes for improving kids' thinking skill.