• Title/Summary/Keyword: 과거이력자료

Search Result 55, Processing Time 0.027 seconds

A Study on the Construction of Historical Profiles for Freeway Travel Time Forecasting (고속도로 통행시간 예측을 위한 과거 통행시간 이력자료 구축에 관한 연구(지점 검지기를 중심으로))

  • Kim, Dong-Ho;Rho, Jeong-Hyun;Park, Dong-Joo;Park, Jee-Hyung;Kim, Han-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.131-141
    • /
    • 2008
  • The objective of this study is to propose methods for determining optimal representative value and the optimal size of historical data for reliable travel time forecasting. We selected values with the smallest mean of forecasting errors as the optimal representative value of travel time pattern data. The optimal size of historical data used was determined using the CVMSE(Cross Validated Mean Square Error) method. According to the results of applying the methods to point vehicle detection data of Korea Highway Corporation, the optimal representative value were analyzed to be median. Second, it was analyzed that 60 days' data is the optimal size of historical data usedfor travel time forecasting.

A Study on the Prediction of Traffic Volume on Highway by the Reference Day of Archived Data (이력자료 참조일수에 따른 고속도로 교통량 예측에 관한 연구)

  • Lee, So-Yeon;Jung, So-Yeon
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.230-237
    • /
    • 2018
  • Purpose: In Korea, traffic information is collected in real time as part of Intelligent Transportation System to enhance efficiency of road operation. However, traffic information based on real-time data is different from the traffic situation the driver will experience. Method: In this study, forecasts were made for future highway traffic by day and time period by adjusting the Archived data reference days to 3, 5 and 10 days based on existing traffic Archived data. Results: Fewer days of reference in the past showed smaller errors. The prediction of Monday based on five past histories showed greater errors than the 10 past histories, as the traffic flow on the sixth Monday of 2016 was somewhat different from the usual holiday. Conclution: This study shows that less of the reference days of the past history when estimating traffic volume, the more accurate the data of the traffic history of the event can be used on special days.

A Study on the Construction of Historical Profiles for Travel Speed Prediction Using UTIS (UTIS기반 구간통행속도 예측을 위한 교통이력자료 구축에 관한 연구)

  • Ki, Yong-Kul;Ahn, Gye-Hyeong;Kim, Eun-Jeong;Bae, Kwang-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.40-48
    • /
    • 2012
  • In this paper, we suggests methods for determining optimal representative value and the optimal size of historical data for reliable travel speed prediction. To evaluate the performance of the proposed method in real world environments, we did field tests at four roadway links in Seoul on Tuesday and Sunday. According to the results of applying the methods to historical data of Central Traffic Information Center, the optimal representative value were analyzed to be average and weighted average. Second, it was analyzed that 2 months data is the optimal size of historical data used for travel speed prediction.

Development of a Daily Pattern Clustering Algorithm using Historical Profiles (과거이력자료를 활용한 요일별 패턴분류 알고리즘 개발)

  • Cho, Jun-Han;Kim, Bo-Sung;Kim, Seong-Ho;Kang, Weon-Eui
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.11-23
    • /
    • 2011
  • The objective of this paper is to develop a daily pattern clustering algorithm using historical traffic data that can reliably detect under various traffic flow conditions in urban streets. The developed algorithm in this paper is categorized into two major parts, that is to say a macroscopic and a microscopic points of view. First of all, a macroscopic analysis process deduces a daily peak/non-peak hour and emphasis analysis time zones based on the speed time-series. A microscopic analysis process clusters a daily pattern compared with a similarity between individuals or between individual and group. The name of the developed algorithm in microscopic analysis process is called "Two-step speed clustering (TSC) algorithm". TSC algorithm improves the accuracy of a daily pattern clustering based on the time-series speed variation data. The experiments of the algorithm have been conducted with point detector data, installed at a Ansan city, and verified through comparison with a clustering techniques using SPSS. Our efforts in this study are expected to contribute to developing pattern-based information processing, operations management of daily recurrent congestion, improvement of daily signal optimization based on TOD plans.

Expressway Travel Time Prediction Using K-Nearest Neighborhood (KNN 알고리즘을 활용한 고속도로 통행시간 예측)

  • Shin, Kangwon;Shim, Sangwoo;Choi, Keechoo;Kim, Soohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1873-1879
    • /
    • 2014
  • There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.

Prediction and Applicability of Snow Damage Using Random Forest (랜덤포레스트를 이용한 대설피해액 예측 및 적용성 검토)

  • Lee, Hyeong Joo;Chung, Gun Hui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.399-399
    • /
    • 2019
  • 최근 세계적인 기상이변으로 국지적인 대설과 한파의 발생이력이 증가하고 있다. 특히 최근 2018년 1월 8일 미국에 100년만의 한파로 인해 체감온도가 영하 69도까지 떨어지고, 우리나라에서도 같은 해 2월 8일 제주도 폭설과 한파로 인해 교통이 마비되는 피해가 발생한 것으로 알려져 대표적인 겨울철 자연재해인 대설 피해에 대한 관심이 증가하고 있는 추세이다. 이로 인해 대설 피해예측 및 저감에 대한 연구가 다수 진행되고 있으나, 시 군 구 별 과거 피해이력이 적고, 피해가 발생한 지역과 관측소 사이의 거리가 멀어 정확한 피해예측이 어려운 상황이다. 따라서 본 연구에서는 대설피해에 영향을 미치는 변수들의 데이터를 수집한 뒤 랜덤포레스트를 이용하여 대설피해액을 범주형으로 구분하고, 어느 범주에 포함되는지 예측 및 적용성을 검토하였다. 현재 과거 피해자료의 부족, 과거 피해 발생 환경과 현재 피해 발생 환경의 차이, 대설로 인해 피해가 가장 많이 발생하는 비닐하우스 설계 기준의 변화 등으로 인해 예측 정확도가 높지 않았다. 따라서 대설피해 발생지역의 정확한 기상자료가 확보되고, 변수로 사용한 데이터의 최신화가 진행된다면 본 연구결과의 정확도 향상과 대략적인 대설피해규모 예측이 가능 할 것으로 기대된다.

  • PDF

A Study on Development of Bus Arrival Time Prediction Algorithm by using Travel Time Pattern Recognition (통행시간 패턴인식형 버스도착시간 예측 알고리즘 개발 연구)

  • Chang, Hyunho;Yoon, Byoungjo;Lee, Jinsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.833-839
    • /
    • 2019
  • Bus Information System (BIS) collects information related to the operation of buses and provides information to users through predictive algorithms. Method of predicting through recent information in same section reflects the traffic situation of the section, but cannot reflect the characteristics of the target line. The method of predicting the historical data at the same time zone is limited in forecasting peak time with high volatility of traffic flow. Therefore, we developed a pattern recognition bus arrival time prediction algorithm which could be overcome previous limitation. This method recognize the traffic pattern of target flow and select the most similar past traffic pattern. The results of this study were compared with the BIS arrival forecast information history of Seoul. RMSE of travel time between estimated and observed was approximately 35 seconds (40 seconds in BIS) at the off-peak time and 40 seconds (60 seconds in BIS) at the peak time. This means that there is data that can represent the current traffic situation in other time zones except for the same past time zone.

Short-term Traffic States Prediction Using k-Nearest Neighbor Algorithm: Focused on Urban Expressway in Seoul (k-NN 알고리즘을 활용한 단기 교통상황 예측: 서울시 도시고속도로 사례)

  • KIM, Hyungjoo;PARK, Shin Hyoung;JANG, Kitae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.158-167
    • /
    • 2016
  • This study evaluates potential sources of errors in k-NN(k-nearest neighbor) algorithm such as procedures, variables, and input data. Previous research has been thoroughly reviewed for understanding fundamentals of k-NN algorithm that has been widely used for short-term traffic states prediction. The framework of this algorithm commonly includes historical data smoothing, pattern database, similarity measure, k-value, and prediction horizon. The outcomes of this study suggests that: i) historical data smoothing is recommended to reduce random noise of measured traffic data; ii) the historical database should contain traffic state information on both normal and event conditions; and iii) trial and error method can improve the prediction accuracy by better searching for the optimum input time series and k-value. The study results also demonstrates that predicted error increases with the duration of prediction horizon and rapidly changing traffic states.

Assessment of Inundation Rainfall Using Past Inundation Records and CCTV Images (CCTV영상과 과거침수기록을 활용한 침수 강우량 평가 - 강남역을 중심으로 -)

  • Kim, Min Seok;Lee, Mi Ran;Choi, Woo Jung;Lee, Jong Kook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.6_1
    • /
    • pp.567-574
    • /
    • 2012
  • For the past few years, the video surveillance market has shown a rapid growth due to the increasing demand for Closed Circuit Television(CCTV) by the public sector and the private security industry. While the overall utilization of CCTV in the public and private sectors is expanding, its usage in the field of disaster management is less than sufficient. Therefore, the authors of this study, in an effort to revisit the role of CCTV in disaster situations, have carried out a case analysis in the vicinity of the Gangnam Station which has been designated as a natural disaster-prone area. First, the CCTV images around the target location are collected and the time and depth of inundation are measured through field surveys and image analyses. Next, a rainfall analysis was conducted using the Automatic Weather Station(AWS) data and the past inundation records. Lastly, the authors provide an estimate of rainfall for the areas around the station and suggest viable warning systems and countermeasures. The results from this study are expected to make positive contributions towards a significant reduction of the damages caused by the floods around the Gangnam Station.