Kim, Dong-Ho;Rho, Jeong-Hyun;Park, Dong-Joo;Park, Jee-Hyung;Kim, Han-Soo
Journal of Korean Society of Transportation
/
v.26
no.5
/
pp.131-141
/
2008
The objective of this study is to propose methods for determining optimal representative value and the optimal size of historical data for reliable travel time forecasting. We selected values with the smallest mean of forecasting errors as the optimal representative value of travel time pattern data. The optimal size of historical data used was determined using the CVMSE(Cross Validated Mean Square Error) method. According to the results of applying the methods to point vehicle detection data of Korea Highway Corporation, the optimal representative value were analyzed to be median. Second, it was analyzed that 60 days' data is the optimal size of historical data usedfor travel time forecasting.
Purpose: In Korea, traffic information is collected in real time as part of Intelligent Transportation System to enhance efficiency of road operation. However, traffic information based on real-time data is different from the traffic situation the driver will experience. Method: In this study, forecasts were made for future highway traffic by day and time period by adjusting the Archived data reference days to 3, 5 and 10 days based on existing traffic Archived data. Results: Fewer days of reference in the past showed smaller errors. The prediction of Monday based on five past histories showed greater errors than the 10 past histories, as the traffic flow on the sixth Monday of 2016 was somewhat different from the usual holiday. Conclution: This study shows that less of the reference days of the past history when estimating traffic volume, the more accurate the data of the traffic history of the event can be used on special days.
Ki, Yong-Kul;Ahn, Gye-Hyeong;Kim, Eun-Jeong;Bae, Kwang-Soo
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.11
no.6
/
pp.40-48
/
2012
In this paper, we suggests methods for determining optimal representative value and the optimal size of historical data for reliable travel speed prediction. To evaluate the performance of the proposed method in real world environments, we did field tests at four roadway links in Seoul on Tuesday and Sunday. According to the results of applying the methods to historical data of Central Traffic Information Center, the optimal representative value were analyzed to be average and weighted average. Second, it was analyzed that 2 months data is the optimal size of historical data used for travel speed prediction.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.10
no.4
/
pp.11-23
/
2011
The objective of this paper is to develop a daily pattern clustering algorithm using historical traffic data that can reliably detect under various traffic flow conditions in urban streets. The developed algorithm in this paper is categorized into two major parts, that is to say a macroscopic and a microscopic points of view. First of all, a macroscopic analysis process deduces a daily peak/non-peak hour and emphasis analysis time zones based on the speed time-series. A microscopic analysis process clusters a daily pattern compared with a similarity between individuals or between individual and group. The name of the developed algorithm in microscopic analysis process is called "Two-step speed clustering (TSC) algorithm". TSC algorithm improves the accuracy of a daily pattern clustering based on the time-series speed variation data. The experiments of the algorithm have been conducted with point detector data, installed at a Ansan city, and verified through comparison with a clustering techniques using SPSS. Our efforts in this study are expected to contribute to developing pattern-based information processing, operations management of daily recurrent congestion, improvement of daily signal optimization based on TOD plans.
KSCE Journal of Civil and Environmental Engineering Research
/
v.34
no.6
/
pp.1873-1879
/
2014
There are various methodologies to forecast the travel time using real-time data but the K-nearest neighborhood (KNN) method in general is regarded as the most one in forecasting when there are enough historical data. The objective of this study is to evaluate applicability of KNN method. In this study, real-time and historical data of toll collection system (TCS) traffic flow and the dedicated short range communication (DSRC) link travel time, and the historical path travel time data are used as input data for KNN approach. The proposed method investigates the path travel time which is the nearest to TCS traffic flow and DSRC link travel time from real-time and historical data, then it calculates the predicted path travel time using weight average method. The results show that accuracy increased when weighted value of DSRC link travel time increases. Moreover the trend of forecasted and real travel times are similar. In addition, the error in forecasted travel time could be further reduced when more historical data could be available in the future database.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.399-399
/
2019
최근 세계적인 기상이변으로 국지적인 대설과 한파의 발생이력이 증가하고 있다. 특히 최근 2018년 1월 8일 미국에 100년만의 한파로 인해 체감온도가 영하 69도까지 떨어지고, 우리나라에서도 같은 해 2월 8일 제주도 폭설과 한파로 인해 교통이 마비되는 피해가 발생한 것으로 알려져 대표적인 겨울철 자연재해인 대설 피해에 대한 관심이 증가하고 있는 추세이다. 이로 인해 대설 피해예측 및 저감에 대한 연구가 다수 진행되고 있으나, 시 군 구 별 과거 피해이력이 적고, 피해가 발생한 지역과 관측소 사이의 거리가 멀어 정확한 피해예측이 어려운 상황이다. 따라서 본 연구에서는 대설피해에 영향을 미치는 변수들의 데이터를 수집한 뒤 랜덤포레스트를 이용하여 대설피해액을 범주형으로 구분하고, 어느 범주에 포함되는지 예측 및 적용성을 검토하였다. 현재 과거 피해자료의 부족, 과거 피해 발생 환경과 현재 피해 발생 환경의 차이, 대설로 인해 피해가 가장 많이 발생하는 비닐하우스 설계 기준의 변화 등으로 인해 예측 정확도가 높지 않았다. 따라서 대설피해 발생지역의 정확한 기상자료가 확보되고, 변수로 사용한 데이터의 최신화가 진행된다면 본 연구결과의 정확도 향상과 대략적인 대설피해규모 예측이 가능 할 것으로 기대된다.
KSCE Journal of Civil and Environmental Engineering Research
/
v.39
no.6
/
pp.833-839
/
2019
Bus Information System (BIS) collects information related to the operation of buses and provides information to users through predictive algorithms. Method of predicting through recent information in same section reflects the traffic situation of the section, but cannot reflect the characteristics of the target line. The method of predicting the historical data at the same time zone is limited in forecasting peak time with high volatility of traffic flow. Therefore, we developed a pattern recognition bus arrival time prediction algorithm which could be overcome previous limitation. This method recognize the traffic pattern of target flow and select the most similar past traffic pattern. The results of this study were compared with the BIS arrival forecast information history of Seoul. RMSE of travel time between estimated and observed was approximately 35 seconds (40 seconds in BIS) at the off-peak time and 40 seconds (60 seconds in BIS) at the peak time. This means that there is data that can represent the current traffic situation in other time zones except for the same past time zone.
This study evaluates potential sources of errors in k-NN(k-nearest neighbor) algorithm such as procedures, variables, and input data. Previous research has been thoroughly reviewed for understanding fundamentals of k-NN algorithm that has been widely used for short-term traffic states prediction. The framework of this algorithm commonly includes historical data smoothing, pattern database, similarity measure, k-value, and prediction horizon. The outcomes of this study suggests that: i) historical data smoothing is recommended to reduce random noise of measured traffic data; ii) the historical database should contain traffic state information on both normal and event conditions; and iii) trial and error method can improve the prediction accuracy by better searching for the optimum input time series and k-value. The study results also demonstrates that predicted error increases with the duration of prediction horizon and rapidly changing traffic states.
Kim, Min Seok;Lee, Mi Ran;Choi, Woo Jung;Lee, Jong Kook
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.30
no.6_1
/
pp.567-574
/
2012
For the past few years, the video surveillance market has shown a rapid growth due to the increasing demand for Closed Circuit Television(CCTV) by the public sector and the private security industry. While the overall utilization of CCTV in the public and private sectors is expanding, its usage in the field of disaster management is less than sufficient. Therefore, the authors of this study, in an effort to revisit the role of CCTV in disaster situations, have carried out a case analysis in the vicinity of the Gangnam Station which has been designated as a natural disaster-prone area. First, the CCTV images around the target location are collected and the time and depth of inundation are measured through field surveys and image analyses. Next, a rainfall analysis was conducted using the Automatic Weather Station(AWS) data and the past inundation records. Lastly, the authors provide an estimate of rainfall for the areas around the station and suggest viable warning systems and countermeasures. The results from this study are expected to make positive contributions towards a significant reduction of the damages caused by the floods around the Gangnam Station.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.