• Title/Summary/Keyword: 공장 데이터 모델

Search Result 66, Processing Time 0.026 seconds

Development of a Forecasting Model for Refinery Crude Column Overhead Corrosion Control (원유 증류 공정 탑 상부의 부식 예측 모델 개발)

  • Kim, Seung-Nam;Kim, Jung-Hwan;Moon, Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2011
  • Corrosion at the top of a distillation column is a common problem in refineries and chemical plants. In particular, severe damage has been inflicted in refineries by corrosive materials such as hydrogen sulfide and chlorine. Therefore, the mechanism of the corrosion occurring at the top of a distillation column has been analyzed, and a model for forecasting the corrosion rate has been developed. Four major materials were selected for modeling: $H_2S$, $CO_2$, $H^+$ and $Cl^-$. These were selected by taking into consideration their effect on the corrosion rate. Studies on the transport phenomenon and reaction engineering for this model were carried out, and the reliability of the model was verified on the basis of the data measured at a real refinery.

A Study on the Latency Analysis of Bus Information System Based on Edge Cloud System (엣지 클라우드 시스템 기반 버스 정보 시스템의 지연시간 분석연구)

  • SEO Seungho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.3-11
    • /
    • 2023
  • Real-time control systems are growing rapidly as infrastructure technologies such as IoT and mobile communication develop and services that value real-time such as factory management and vehicle operation checks increase. Various solutions have been proposed to increase the time sensitivity of this system, but most real-time control systems are currently composed of local servers and multiple clients located in control stations, which are transmitted to local servers where control systems are located. In this paper, we proposed an edge computing-based real-time control model that can reduce the time it takes for the bus information system, one of the real-time control systems, to provide the information to the user at the time it collects the information. Simulating the existing model and the edge computing model, the edge computing model confirmed that the cost for users to receive data is reduced from at least 10% to up to 80% compared to the existing model.

  • PDF

Semantic Segmentation of Hazardous Facilities in Rural Area Using U-Net from KOMPSAT Ortho Mosaic Imagery (KOMPSAT 정사모자이크 영상으로부터 U-Net 모델을 활용한 농촌위해시설 분류)

  • Sung-Hyun Gong;Hyung-Sup Jung;Moung-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1693-1705
    • /
    • 2023
  • Rural areas, which account for about 90% of the country's land area, are increasing in importance and value as a space that performs various public functions. However, facilities that adversely affect residents' lives, such as livestock facilities, factories, and solar panels, are being built indiscriminately near residential areas, damaging the rural environment and landscape and lowering the quality of residents' lives. In order to prevent disorderly development in rural areas and manage rural space in a planned manner, detection and monitoring of hazardous facilities in rural areas is necessary. Data can be acquired through satellite imagery, which can be acquired periodically and provide information on the entire region. Effective detection is possible by utilizing image-based deep learning techniques using convolutional neural networks. Therefore, U-Net model, which shows high performance in semantic segmentation, was used to classify potentially hazardous facilities in rural areas. In this study, KOMPSAT ortho-mosaic optical imagery provided by the Korea Aerospace Research Institute in 2020 with a spatial resolution of 0.7 meters was used, and AI training data for livestock facilities, factories, and solar panels were produced by hand for training and inference. After training with U-Net, pixel accuracy of 0.9739 and mean Intersection over Union (mIoU) of 0.7025 were achieved. The results of this study can be used for monitoring hazardous facilities in rural areas and are expected to be used as basis for rural planning.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

Establishment of WBS·CBS-based Construction Information Classification System for Efficient Construction Cost Analysis and Prediction of High-tech Facilities (하이테크 공장의 효율적 건설 사업비 분석 및 예측을 위한 WBS·CBS 기반 건설정보 분류체계 구축)

  • Choi, Seong Hoon;Kim, Jinchul;Kwon, Soonwook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.356-366
    • /
    • 2021
  • The high-tech industry, a leader in the national economy, has a larger investment cost compared to general buildings, a shorter construction period, and requires continuous investment. Therefore, accurate construction cost prediction and quick decision-making are important factors for efficient cost and process management. Overseas, the construction information classification system has been standardized since 1980 and has been continuously developed, improving construction productivity by systematically collecting and utilizing project life cycle information. At domestic construction sites, attempts have been made to standardize the classification system of construction information, but it is difficult to achieve continuous standardization and systematization due to the absence of a standardization body and differences in cost and process management methods for each construction company. Particular, in the case of the high-tech industry, the standardization and systematization level of the construction information classification system for high-tech facility construction is very low due to problems such as large scale, numerous types of work, complex construction and security. Therefore, the purpose of this study is to construct a construction information classification system suitable for high-tech facility construction through collection, classification, and analysis of related project data constructed in Korea. Based on the WBS (Work Breakdown Structure) and CBS (Cost Breakdown Structure) classified and analyzed through this study, a code system through hierarchical classification was proposed, and the cost model of buildings by linking WBS and CBS was three-dimensionalized and the utilized method was presented. Through this, an information classification system based on inter-relationships can be developed beyond the one-way tree structure, which is a general construction information classification system, and effects such as shortening of construction period and cost reduction will be maximized.

Growth Modeling of Perilla frutescens (L.) Britt. Using Expolinear Function in a Closed-type Plant Factory System (완전제어형 식물공장에서 선형지수함수를 이용한 들깨의 생육 모델링)

  • Seounggwan Sul;Youngtaek Baek;Young-Yeol Cho
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.34-39
    • /
    • 2023
  • Growth modeling in plant factories can not only control stable production and yield, but also control environmental conditions by considering the relationship between environmental factors and plant growth rate. In this study, using the expolinear function, we modeled perilla [Perilla frutescens (L.) Britt.] cultivated in a plant factory. Perilla growth was investigated 12 times until flower bud differentiation occurred after planting under light intensity, photoperiod, and the ratio of mixed light conditions of 130 μmol·m-2·s-1, 12/12 h, red:green:blue (7:1:2), respectively. Additionally, modeling was performed to predict dry and fresh weights using the expolinear function. Fresh and dry weights were strongly positively correlated (r = 0.996). Except for dry weight, fresh weight showed a high positive correlation with leaf area, followed by plant height, number of leaves, number of nodes, leaf length, and leaf width. When the number of days after transplanting, leaf area, and plant height were used as independent variables for growth prediction, leaf area was found to be an appropriate independent variable for growth prediction. However, additional destructive or non-destructive methods for predicting growth should be considered. In this study, we created a growth model formula to predict perilla growth in plant factories.

Degradation-Based Remaining Useful Life Analysis for Predictive Maintenance in a Steel Galvanizing Kettle (철강 도금로의 예지보전을 위한 열화 기반 잔존수명 분석)

  • Shin, Joon Ho;Kim, Chang Ouk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.271-280
    • /
    • 2019
  • Smart factory, a critical part of digital transformation, enables data-driven decision making using monitoring, analysis and prediction. Predictive maintenance is a key element of smart factory and the need is increasing. The purpose of this study is to analyze the degradation characteristics of a galvanizing kettle for the steel plating process and to predict the remaining useful life(RUL) for predictive maintenance. Correlation analysis, multiple regression, principal component regression were used for analyzing factors of the process. To identify the trend of degradation, a proposed rolling window was used. It was observed the degradation trend was dependent on environmental temperature as well as production factors. It is expected that the proposed method in this study will be an example to identify the trend of degradation of the facility and enable more consistent predictive maintenance.

Hydrometeorological Drivers of Particulate Matter Using Satellite and Reanalysis Data (인공위성 및 재분석 자료를 이용한 미세먼지 농도와 수문기상인자의 상관성 분석)

  • Lee, Seul Chan;Jeong, Jae Hwan;Choi, Min Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.100-100
    • /
    • 2019
  • 최근 대기 중 미세먼지의 농도가 높은 일수가 급증하면서, 미세먼지를 저감하고자 하는 연구가 활발히 이루어지고 있다. 미세먼지는 주로 자동차 혹은 공장 등 인간 활동에 의한 오염물질 배출에 의해 발생하는 것으로 알려져 있으며, 태양복사에너지, 토양수분, 강우, 풍속 등의 수문기상학적 인자에 의해 발생, 이동, 소멸의 과정을 거친다. 현재 우리나라에서는 미세먼지 농도를 관측하기 위해 지점 기반의 관측소를 운영하고 있으며, 관측소가 위치하지 않은 지역의 미세먼지 농도는 선형 보간법 등을 활용한 내삽 기법을 통해 제공하고 있다. 그러나 미세먼지 농도는 다양한 수문기상인자들의 영향에 의한 차이가 크게 나타나기 때문에 지점 기반의 자료로는 해당 지역의 미세먼지 농도를 추정하는 데 어려움이 많다. 본 연구에서는 미세먼지의 공간적인 분포를 추정하고자 MODerate resolution Imaging Spectroradiometer (MODIS) 에어로졸 자료와 Global Land Data Assimilation System (GLDAS) 수문기상인자를 활용하여 미세먼지 농도에 영향을 주는 것으로 판단되는 다양한 수문기상인자들과의 상관성을 분석하였다. 미세먼지와 각 인자간의 상관성을 분석하여 높은 상관성을 갖는 수문기상인자들을 도출하고 최적의 선형회귀분석 모델을 구축하기 위해 베이지안 모델 평균(Bayesian Model Averaging, BMA)을 사용하였으며, 지점 데이터와의 비교를 통해 활용성을 검증하였다. 전체적으로 수문기상인자를 사용한 선형회귀분석 결과에서는 미세먼지농도 변화의 경향을 반영하고 있는 것을 확인할 수 있었으나, 계절별, 지역별 등 대기 특성을 고려하지 않아 각 기간의 급격한 농도 변화를 감지하기에 어려움이 있었다. 이러한 연구를 바탕으로 수문기상인자와 미세먼지 농도의 패턴이 더욱 정확히 분석된다면, 미세먼지 농도 모니터링과 정확한 예보 시스템의 구축에 효과적으로 활용 될 것으로 기대된다.

  • PDF

Major Technologies and Introduction of Smart Factory (스마트 팩토리의 주요기술과 도입사례)

  • Woo, Sung-Hee;Cho, Young-Bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.487-490
    • /
    • 2018
  • As the fourth industrial revolution 4.0 era arrives, the role of smart factory is emerging, which establishes a communication system between production devices and products through the Internet of Things and optimizes the entire production process. Germany wants to use smart factory technologies and data to upgrade and standardize the industry as a whole to create factories around the world, and the United States is aiming to create new business models and revenue streams by analyzing big data and improving productivity based on the technological prowess and innovation across ICT. In addition, Japan and China are also working to change and upgrade their manufacturing industries through smart factories. Accordingly, Korea is attempting to introduce smart factory based on the production industry 3.0. Therefore, this study describes the industrial trends of the fourth industrial revolution and smart factory and compares the major underlying technologies and introduction cases of smart factory.

  • PDF

Design of Efficient Edge Computing based on Learning Factors Sharing with Cloud in a Smart Factory Domain (스마트 팩토리 환경에서 클라우드와 학습된 요소 공유 방법 기반의 효율적 엣지 컴퓨팅 설계)

  • Hwang, Zi-on
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2167-2175
    • /
    • 2017
  • In recent years, an IoT is dramatically developing according to the enhancement of AI, the increase of connected devices, and the high-performance cloud systems. Huge data produced by many devices and sensors is expanding the scope of services, such as an intelligent diagnostics, a recommendation service, as well as a smart monitoring service. The studies of edge computing are limited as a role of small server system with high quality HW resources. However, there are specialized requirements in a smart factory domain needed edge computing. The edges are needed to pre-process containing tiny filtering, pre-formatting, as well as merging of group contexts and manage the regional rules. So, in this paper, we extract the features and requirements in a scope of efficiency and robustness. Our edge offers to decrease a network resource consumption and update rules and learning models. Moreover, we propose architecture of edge computing based on learning factors sharing with a cloud system in a smart factory.