DOI QR코드

DOI QR Code

Development of a Forecasting Model for Refinery Crude Column Overhead Corrosion Control

원유 증류 공정 탑 상부의 부식 예측 모델 개발

  • Kim, Seung-Nam (Dept. of Chemical and Biomolecular Engineering, Yonsei Univ.) ;
  • Kim, Jung-Hwan (Dept. of Chemical and Biomolecular Engineering, Yonsei Univ.) ;
  • Moon, Il (Dept. of Chemical and Biomolecular Engineering, Yonsei Univ.)
  • 김승남 (연세대학교 화공생명공학과) ;
  • 김정환 (연세대학교 화공생명공학과) ;
  • 문일 (연세대학교 화공생명공학과)
  • Received : 2010.05.13
  • Accepted : 2010.11.23
  • Published : 2011.02.01

Abstract

Corrosion at the top of a distillation column is a common problem in refineries and chemical plants. In particular, severe damage has been inflicted in refineries by corrosive materials such as hydrogen sulfide and chlorine. Therefore, the mechanism of the corrosion occurring at the top of a distillation column has been analyzed, and a model for forecasting the corrosion rate has been developed. Four major materials were selected for modeling: $H_2S$, $CO_2$, $H^+$ and $Cl^-$. These were selected by taking into consideration their effect on the corrosion rate. Studies on the transport phenomenon and reaction engineering for this model were carried out, and the reliability of the model was verified on the basis of the data measured at a real refinery.

정유 석유화학 플랜트에서 탑 상부의 부식은 현장에서 자주 발생되는 심각한 문제이다. 특히 정유 공정 탑 상부에는 황화수소, 염소 등의 부식 물질들로 인하여 그 피해 정도가 심각하다. 따라서 본 연구에서는 정유 공정 탑 상부의 부식 메커니즘을 분석하고, 부식률을 예측하는 모델을 개발하였다. 정유 공정 탑 상부의 부식 메커니즘을 분석한 결과, 부식에 가장 큰 영향을 미치는 네 가지 성분인 $H_2S$, $CO_2$, $H^+$, $Cl^-$을 고려하여 예측 모델을 개발하였다. 부식 메커니즘을 해석하는 데에 이동 현상 및 반응 공학의 관점으로 접근하여 모델을 개발 하였다. 또한 실제 정유공장에서 측정된 데이터들을 토대로 그 신뢰성을 검증하였다.

Keywords

References

  1. Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P. and Payer, J. H., 2003, “Corrosion Costs and Preventive Strategies in the United States,” FSP & SFPE.
  2. Kim, J. H., Kim, J. Y., Lee, Y. H., Park, S. R., Seo, S. K., Lee, Y. H. and Moon, I., 2008, “Development of CCD(Corrosion Control Document) in Refinery Process,” Journal of the KOSOS, Vol. 24, No. 1, pp. 31-36.
  3. Kim, D. S., Yang, K. M. and Kim, G. M., 2000, “High Temperature Sulfidation Behavior of IN738 and IN738LC for Gas Turbine Materials in 5% SO2 Atmosphere,” J. Corros. Sci. Soc. of Korea, Vol. 29, No. 336.
  4. Lee, H., Jung, J. and Kim, E., 2009, “High Temperature Corrosion Properies of Heat Resistant Chrome Steels in SO2 Atmosphere,” J. Kor. Inst. Met. & Mater., Vol. 47, No. 2, pp. 99-106.
  5. Sun, W. and Nesic, S., 2009, “A Mechanistic Model of Uniform Hydrogen Sulfide/Carbon Dioxide Corrosion of Mild Steel,” Corrosion, Vol. 65, No. 5, pp. 291-307. https://doi.org/10.5006/1.3319134
  6. Noor, E. A. and Al-Moubaraki, A. H., 2008, “Corrosion Behavior of Mild Steel in Hydrochloric Acid Solutions,” Int. J. Electrochem. Sci., Vol. 3, pp. 806-808.
  7. Eiger, A., Sikorski, K. and Stenger, F., 1984, "A Bisection Method for Systems of Nonlinear Equations," ACM Transactions on Mathematical software, Vol. 10, No. 4, pp. 367-377 https://doi.org/10.1145/2701.2705
  8. Cypriano, D. L. N., Ponciano, J. A. C. and Jambo, H. C. M., 2009, “Crude Unit Overhead Corrosion - pH Profile and Corrosion Rate of Carbon Steel Under Controlled Condensation,” Materials and Corrosion, Vol. 60, No. 9999, pp. 1-6.
  9. Hoffmeister, H., 2006, “Modeling of Hydrogen Sulfide Corrosion by Coupling of Phase and Polarization Behavior,” Corrosion, Vol. 62, No. 12, pp. 1092-1099. https://doi.org/10.5006/1.3278243
  10. Song, F. M., 2010, “A Comprehensive Model for Predicting CO2 Corrosion Rate in Oil and Gas Production and Transportation Systems,” Electrohimica Acta, Vol. 55, pp. 689-700. https://doi.org/10.1016/j.electacta.2009.07.087