Browse > Article
http://dx.doi.org/10.3795/KSME-A.2011.35.2.143

Development of a Forecasting Model for Refinery Crude Column Overhead Corrosion Control  

Kim, Seung-Nam (Dept. of Chemical and Biomolecular Engineering, Yonsei Univ.)
Kim, Jung-Hwan (Dept. of Chemical and Biomolecular Engineering, Yonsei Univ.)
Moon, Il (Dept. of Chemical and Biomolecular Engineering, Yonsei Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.35, no.2, 2011 , pp. 143-148 More about this Journal
Abstract
Corrosion at the top of a distillation column is a common problem in refineries and chemical plants. In particular, severe damage has been inflicted in refineries by corrosive materials such as hydrogen sulfide and chlorine. Therefore, the mechanism of the corrosion occurring at the top of a distillation column has been analyzed, and a model for forecasting the corrosion rate has been developed. Four major materials were selected for modeling: $H_2S$, $CO_2$, $H^+$ and $Cl^-$. These were selected by taking into consideration their effect on the corrosion rate. Studies on the transport phenomenon and reaction engineering for this model were carried out, and the reliability of the model was verified on the basis of the data measured at a real refinery.
Keywords
Corrosion; Forecasting Model; Refinery; Crude Column Overhead; Corrosion Control;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Song, F. M., 2010, “A Comprehensive Model for Predicting CO2 Corrosion Rate in Oil and Gas Production and Transportation Systems,” Electrohimica Acta, Vol. 55, pp. 689-700.   DOI   ScienceOn
2 Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P. and Payer, J. H., 2003, “Corrosion Costs and Preventive Strategies in the United States,” FSP & SFPE.
3 Kim, J. H., Kim, J. Y., Lee, Y. H., Park, S. R., Seo, S. K., Lee, Y. H. and Moon, I., 2008, “Development of CCD(Corrosion Control Document) in Refinery Process,” Journal of the KOSOS, Vol. 24, No. 1, pp. 31-36.
4 Kim, D. S., Yang, K. M. and Kim, G. M., 2000, “High Temperature Sulfidation Behavior of IN738 and IN738LC for Gas Turbine Materials in 5% SO2 Atmosphere,” J. Corros. Sci. Soc. of Korea, Vol. 29, No. 336.   과학기술학회마을
5 Lee, H., Jung, J. and Kim, E., 2009, “High Temperature Corrosion Properies of Heat Resistant Chrome Steels in SO2 Atmosphere,” J. Kor. Inst. Met. & Mater., Vol. 47, No. 2, pp. 99-106.
6 Sun, W. and Nesic, S., 2009, “A Mechanistic Model of Uniform Hydrogen Sulfide/Carbon Dioxide Corrosion of Mild Steel,” Corrosion, Vol. 65, No. 5, pp. 291-307.   DOI   ScienceOn
7 Noor, E. A. and Al-Moubaraki, A. H., 2008, “Corrosion Behavior of Mild Steel in Hydrochloric Acid Solutions,” Int. J. Electrochem. Sci., Vol. 3, pp. 806-808.
8 Eiger, A., Sikorski, K. and Stenger, F., 1984, "A Bisection Method for Systems of Nonlinear Equations," ACM Transactions on Mathematical software, Vol. 10, No. 4, pp. 367-377   DOI   ScienceOn
9 Cypriano, D. L. N., Ponciano, J. A. C. and Jambo, H. C. M., 2009, “Crude Unit Overhead Corrosion - pH Profile and Corrosion Rate of Carbon Steel Under Controlled Condensation,” Materials and Corrosion, Vol. 60, No. 9999, pp. 1-6.
10 Hoffmeister, H., 2006, “Modeling of Hydrogen Sulfide Corrosion by Coupling of Phase and Polarization Behavior,” Corrosion, Vol. 62, No. 12, pp. 1092-1099.   DOI   ScienceOn