공분산 행렬은 다변량 통계분석에서 중요한 역할을 하고 있으며 전통적인 다변량 분석의 경우 표본 공분산 행렬이 참공분산 행렬의 추정량으로 주로 사용되었다. 하지만 변수의 수가 표본의 크기보다 훨씬 큰 고차원 데이터와 같은 경우에는 표본 공분산 행렬은 비정칙행렬이 되어 기존의 다변량 기법을 사용하는 데 적절하지 않을 수가 있다. 최근 이러한 문제점을 해결하기 위해 축소추정, 경계추정, 수정 콜레스키 분해 추정 등의 새로운 공분산 행렬의 추정량들이 제안되었다. 본 논문에서는 추정량들의 성능에 영향을 미칠 수 있는 여러 현실적인 상황들을 가정하여 모의실험을 통해 참공분산 행렬의 추정량들의 성능을 비교하였다.
본 논문은 카메라로부터 획득한 컬러 비디오 영상에서 컬러 색상과 에지 그래디언트의 공분산 행렬에 기반한 영상의 변화영역을 검출하는 방법을 제안한다. 컬러 비디오 영상은 RGB 영상 대신에 밝기정보와 색상정보가 분리된 YCbCr 컬러비디오 포맷을 사용한다. CbCr-채널로부터 컬러의 색상분포를 알 수 있는 컬러 공분산 행렬을 계산하며, Y-채널로부터는 영상의 에지 그래디언트 분포를 알 수 있는 공분산 행렬을 계산한다. 컬러 공분산 행렬과 에지 그래디언트 공분산 행렬은 배경영상으로부터 적분영상을 사용하여 사각영역의 합계와 제곱 합계, 곱셈 합계를 효과적으로 계산하여 각 화소에서 빠르게 계산된다. 또한 시간에 따른 변화를 반영하기 위하여 배경영상과 입력영상의 가중평균에 의해 배경영상을 갱신한다. 현재 프레임에서의 배경영상으로부터의 변화영역은 컬러 공분산 행렬과 에지 그래디언트 공분산 행렬을 사용한 통계적 거리측정인 마하라노비스 거리를 이용하여 검출한다. 고속도로의 컬러 비디오 영상의 실험결과에서 컬러색상과 그래디언트의 변화영역을 효과적으로 검출할 수 있었다.
본 논문은 공분산 행렬과 리만 다양체 이론에 근거를 둔 이동물체를 추적하는 새로운 방법을 제안한다. 연속적으로 변화하는 동영상 배경에서 다양한 변형을 겪는 비정형 물체를 추적하기 위해 공분산 행렬을 사용하여 특징 추출을 한다. 공분산 행렬은 특징들의 상관관계뿐만 아니라 공간적인 속성과 통계학적인 속성을 다룰 수 있으므로 서로 다른 유형의 특징들의 융합이 가능하며 행렬의 차원이 작다. 그러므로 이동물체 영역의 공분산 행렬을 특징벡터로 구성하고 후보 영역의 공분산 행렬과 비교 연산함으로써 각 프레임마다 이동물체의 위치를 추정할 수 있다. 여기서 리만 기하학은 이동물체의 변형과 모양 변화에 효과적으로 적용될 수 있으며 최소 거리를 갖는 추정 영역을 계산하기 위해 측지선 거리를 사용하므로 정확도를 향상시킨다. 제안한 방법의 효율성은 실험을 통해 검증하였다.
경시적 자료분석에서 공변량 효과를 추정할 때 반복 측정된 결과들의 상관성은 고려되어야 한다. 따라서 공분산 행렬을 모형화하는 것은 매우 중요하다. 그러나 공분산 행렬의 추정은 모수들의 수가 많고 추정된 공분산행렬이 양정치성을 만족해야 하므로 쉽지 않은 문제이다. 이러한 제한을 극복하기 위해, 공분산행렬의 모형화를 위한 여러가지 방법을 제안하였다: 자기회귀/이동평균/자기회귀-이동평균 구조를 각각 적용한 수정 콜레스키분해 (Pourahmadi, 1999), 이동평균 콜레스키분해 (Zhang과 Leng, 2012)와 자기회귀-이동평균 콜레스키 분해 (Lee 등, 2017) 이들 구조를 가지는 공분산 행렬의 특징을 비교연구하고자 한다. 이 세 가지 모형의 성능을 비교하기 위한 모의실험을 실시한다.
본 논문에서는 영상에 존재하는 잡음 (noise) 들을 제거하는 방법 중 하나인 비 지역적 평균 (non-local means, NLM) 알고리즘을 먼저 소개하고 비 지역적 평균 알고리즘의 개선된 방법 중 하나인 주성분 분석 (principal component analysis, PCA) 기반의 알고리즘에 대해서도 소개한다. 주성분 분석을 활용하기 위해서는 선행적으로 공분산 행렬 (covariance matrix)을 구해야 하는데, 영상의 모든 픽셀들을 대상으로 하였을 때 이 공분산 행렬을 구하기 위해서는 큰 크기를 가지는 행렬 곱 연산이 필요하다. 만약 비 지역적 평균 알고리즘의 영상 패치 (neighborhood patch) 의 크기를 S × S = S2, 영상 전체의 픽셀 수를 Q라고 한다면 공분산 행렬을 구하기 위해서는 S2 × Q 크기의 행렬 곱 연산이 필요하게 된다. 이는 영상의 특성을 고려하면 비효율적인 연산이다. 따라서 본 논문에서는 공분산 행렬을 효율적으로 구하기 위해, 영상 패치들간의 일정 간격을 유지하면서 샘플링을 하는 방법을 제안하고자 한다. 최종적으로, 샘플링 후에는 S2 × floor (Width/l) × (Height/l) 크기를 가진 행렬의 곱 연산으로 공분산 행렬을 구할 수 있다.
같은 개체로부터 반복 측정한 자료를 경시적 자료(longitudinal data)라고 한다. 이러한 자료를 분석하려면 흔히 사용되는 횡단 자료 분석과는 다른 분석 방법이 필요하다. 즉, 경시적 자료에서 공변량의 효과를 추정할 때에는 반복 측정된 결과 간의 상관성을 고려해야 하며, 따라서 공분산행렬을 모형화 하는 것이 매우 중요하다. 그러나 추정해야 할 모수가 많고, 추정된 공분산행렬이 양정치성을 만족해야 하므로 공분산 행렬의 모형화는 쉽지 않다. 특히 다변량 경시적 자료분석을 위한 공분산행렬의 모형화는 더욱더 심층적인 방법론을 사용해야 한다. 본 논문은 다변량 경시적 자료분석을 위한 공분산행렬을 모형화하기 위해 두 가지 방법론을 고찰한다. 두 방법 모두 수정된 콜레스키 분해(modified Cholesky decomposition)를 이용하여 시간에 따른 응답변수들의 상관관계를 설명하고 있다. 하지만 같은 시간에서 관측된 응답변수들간의 상관관계를 설명하는 방법이 다르다. 첫 번째 방법론에서는 향상된 선형 공분산 모형(enhanced linear covariance models)을 사용하여 공분산행렬이 양정치성을 만족하도록 한다. 두 번째 방법론에서는 분산-공분산 분해(variance-correlation decomposition)와 초구분해(hypersphere decomposition)을 이용하여 공분산 행렬을 모형화 한다. 이 두 방법론의 성능을 비교하고자 모의실험을 진행한다.
Fractional Brownian motion(fBm)은 long-term persistence 특성을 가진 자연 현상, 1/f 잡음, 깊이가 낮은 해저에서의 배경음향잡음 등을 모델링하는데 많이 사용된다. 이 fBm은 nonstationary 유색잡음이다. 이러한 유색잡음 환경 하에서 신호를 검출하기 위한 한 방법은 Fredholm 적분방정식의 해를 구하는 것이다. 이 방정식을 이산화 하면 잡음의 공분산 행렬의 역행렬이 포함되어 계산량이 많다 본 논문에서는 fBm 잡음의 공분산 행렬을 웨이브렛 변환하여 얻어지는 행렬, 즉 fBm의 멀티스케일 성분들의 공분산행렬은 밴드화된 블록들로 근사화할 수 있다는 성질을 이용하여 적은 계산량으로 신호를 검출하는 알고리즘을 제안한다.
SMI 방법은 수치적인 불안정성과 아울러 많은 계산량을 갖는다. 본 논문에서는 역 공분산 행렬의 Cholesky 분할을 이용하여 SMI 방법보다 효율적인 방법을 제안한다. 제안한 방법에서는 적응 빔 형상과 검출이 하나의 구조로 실현되며 이에 피룡한 역 공분산 행렬의 Cholesky factor는 secondary 입력으로부터 GS 프로세서를 이용하여 추정한다. 제안한 구조의 중요한 특징은 공분산 행렬과 Cholesky factor를 직접 구할 필요가 없다는 점이며, 또한 GS 프로세서의 장점을 이용한 systolic 구조를 사용함으로써 효율적인 계산을 수행할 수 있다. 모의 실험을 통하여 제안한 방법의 성능과 SMI 방법의 성능을 서로 비교하였다. 또한 nonhomogeneous 환경에서 동작하기 위한 방법이 제시되었으며, 아울러 계산량이 많은 GS 구조의 단점을 극복하기 위해 lattice-GS 구조를 이용하는 방법을 제안하였다.
본 논문에서는 칼만 필터 알고리즘과 공분산 행렬을 결합한 강인한 이동 물체 추적 방법을 제안한다. 연속적으로 변화하는 영상 내에서 추적하고자 하는 물체의 특징으로서 공분산 행렬은 특징들의 상관관계뿐만 아니라 공간적인 속성과 통계적 속성을 다루므로 목표물의 형태와 모양의 변화에도 추적의 지속성을 보장한다. 그러나 이동 물체의 움직이는 속도가 연산 속도보다 고속의 경우 실시간 추적이 어려우며 탐색 윈도우가 목표물을 놓치므로 이를 해결하기 위해 칼만 필터를 사용하여 이동 물체의 영역을 추정하며, 칼만 탐색 윈도우 내 이동 물체 영역의 공분산 행렬을 특징 벡터로 구성하고, 후보 영역의 공분산 행렬과 비교하면서 추적하는 방법을 실험하여 96.3%의 추적률을 달성하였다.
본 논문에서는 등간격 선형어레이로 입사한 인코히어런트신호의 도래각을 추정하기 위하여 행렬특성매핑을 기본으로 한 알고리듬을 제안한다. 알로리듬의 기본 개념은 공분산 행렬 초정값과 Frobenius norm 면에서 가장 가까운 공분산 행렬 (혹은 스펙트럼 밀도행렬)을 찾는 것이다. 제안된 알고리듬의 우수한 성능을 보여주기 위하여 협대역 신호인 경우에는 MUSIC과 광대역 신호인 경우에는 CSM-MUSIC과 컴퓨터 시뮬레이션을 통하여 통계적 성능을 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.