• Title/Summary/Keyword: 공분산 행렬

Search Result 224, Processing Time 0.475 seconds

A Comparative Study of Covariance Matrix Estimators in High-Dimensional Data (고차원 데이터에서 공분산행렬의 추정에 대한 비교연구)

  • Lee, DongHyuk;Lee, Jae Won
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.5
    • /
    • pp.747-758
    • /
    • 2013
  • The covariance matrix is important in multivariate statistical analysis and a sample covariance matrix is used as an estimator of the covariance matrix. High dimensional data has a larger dimension than the sample size; therefore, the sample covariance matrix may not be suitable since it is known to perform poorly and event not invertible. A number of covariance matrix estimators have been recently proposed with three different approaches of shrinkage, thresholding, and modified Cholesky decomposition. We compare the performance of these newly proposed estimators in various situations.

Change Area Detection using Color and Edge Gradient Covariance Features (색상과 에지 공분산 특징을 이용한 변화영역 검출)

  • Kim, Dong-Keun;Hwang, Chi-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.717-724
    • /
    • 2016
  • This paper proposes a change detection method based on the covariance matrices of color and edge gradient in a color video. The YCbCr color format was used instead of RGB. The color covariance matrix was calculated from the CbCr-channels and the edge gradient covariance matrix was calculated from the Y-channels. The covariance matrices were effectively calculated at each pixel by calculating the sum, squared sum, and sum of two values' multiplication of a rectangle area using the integral images from a background image. The background image was updated by a running the average between the background image and a current frame. The change areas in a current frame image against the background were detected using the Mahalanobis distance, which is a measure of the statistical distance using covariance matrices. The experimental results of an expressway color video showed that the proposed approach can effectively detect change regions for color and edge gradients against the background.

A Novel Method for Moving Object Tracking using Covariance Matrix and Riemannian Metric (공분산 행렬과 리만 측도를 이용한 이동물체 추적 방법)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.364-370
    • /
    • 2011
  • This paper propose a novel method for tracking moving object based on covariance matrix and Riemannian Manifolds. With image backgrounds continuously changed, we use the covariance matrices to extract features for tracking nonrigid object undergoing transformation and deformation. The covariance matrix can make fusion of different types of features and has its small dimension, therefore we enable to handle the spatial and statistical properties as well as the component correlation. The proposed method can estimate the position of the moving object by employing the covariance matrix of object region as a feature vector and comparing the candidate regions. Rimannian Geometry is efficiently adapted to object deformation and change of shape and improve the accuracy by using geodesic distance to predict the estimated position with the minimum distance. The experimental results have shown that the proposed method correctly tracked the moving object.

Comparison of the covariance matrix for general linear model (일반 선형 모형에 대한 공분산 행렬의 비교)

  • Nam, Sang Ah;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.103-117
    • /
    • 2017
  • In longitudinal data analysis, the serial correlation of repeated outcomes must be taken into account using covariance matrix. Modeling of the covariance matrix is important to estimate the effect of covariates properly. However, It is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcome the restrictions, several Cholesky decomposition approaches for the covariance matrix were proposed: modified autoregressive (AR), moving average (MA), ARMA Cholesky decompositions. In this paper we review them and compare the performance of the approaches using simulation studies.

An Efficient Method to Compute a Covariance Matrix of the Non-local Means Algorithm for Image Denoising with the Principal Component Analysis (영상 잡음 제거를 위한 주성분 분석 기반 비 지역적 평균 알고리즘의 효율적인 공분산 행렬 계산 방법)

  • Kim, Jeonghwan;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2016
  • This paper introduces the non-local means (NLM) algorithm for image denoising, and also introduces an improved algorithm which is based on the principal component analysis (PCA). To do the PCA, a covariance matrix of a given image should be evaluated first. If we let the size of neighborhood patches of the NLM S × S2, and let the number of pixels Q, a matrix multiplication of the size S2 × Q is required to compute a covariance matrix. According to the characteristic of images, such computation is inefficient. Therefore, this paper proposes an efficient method to compute the covariance matrix by sampling the pixels. After sampling, the covariance matrix can be computed with matrices of the size S2 × floor (Width/l) × (Height/l).

Comparison study of modeling covariance matrix for multivariate longitudinal data (다변량 경시적 자료 분석을 위한 공분산 행렬의 모형화 비교 연구)

  • Kwak, Na Young;Lee, Keunbaik
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.281-296
    • /
    • 2020
  • Repeated outcomes from the same subjects are referred to as longitudinal data. Analysis of the data requires different methods unlike cross-sectional data analysis. It is important to model the covariance matrix because the correlation between the repeated outcomes must be considered when estimating the effects of covariates on the mean response. However, the modeling of the covariance matrix is tricky because there are many parameters to be estimated, and the estimated covariance matrix should be positive definite. In this paper, we consider analysis of multivariate longitudinal data via two modeling methodologies for the covariance matrix for multivariate longitudinal data. Both methods describe serial correlations of multivariate longitudinal outcomes using a modified Cholesky decomposition. However, the two methods consider different decompositions to explain the correlation between simultaneous responses. The first method uses enhanced linear covariance models so that the covariance matrix satisfies a positive definiteness condition; in addition, and principal component analysis and maximization-minimization algorithm (MM algorithm) were used to estimate model parameters. The second method considers variance-correlation decomposition and hypersphere decomposition to model covariance matrix. Simulations are used to compare the performance of the two methodologies.

Signal Detection Using Wavelet Transform in Fractional Brownian Motion (Fractional Brownian Motion 잡음환경 하에서 웨이브렛 변환을 이용한 신호의 검출)

  • 김명진
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.21-24
    • /
    • 2000
  • Fractional Brownian motion(fBm)은 long-term persistence 특성을 가진 자연 현상, 1/f 잡음, 깊이가 낮은 해저에서의 배경음향잡음 등을 모델링하는데 많이 사용된다. 이 fBm은 nonstationary 유색잡음이다. 이러한 유색잡음 환경 하에서 신호를 검출하기 위한 한 방법은 Fredholm 적분방정식의 해를 구하는 것이다. 이 방정식을 이산화 하면 잡음의 공분산 행렬의 역행렬이 포함되어 계산량이 많다 본 논문에서는 fBm 잡음의 공분산 행렬을 웨이브렛 변환하여 얻어지는 행렬, 즉 fBm의 멀티스케일 성분들의 공분산행렬은 밴드화된 블록들로 근사화할 수 있다는 성질을 이용하여 적은 계산량으로 신호를 검출하는 알고리즘을 제안한다.

  • PDF

Adaptive Beamforming and Detection Algorithms Based on the cholesky Decomposition of the Inverse Covariance Matrix (역 공분산 행렬의 Cholesky 분할에 근거한 적응 빔 형성 및 검출 알고리즘)

  • 박영철;차일환;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.2E
    • /
    • pp.47-62
    • /
    • 1993
  • SMI 방법은 수치적인 불안정성과 아울러 많은 계산량을 갖는다. 본 논문에서는 역 공분산 행렬의 Cholesky 분할을 이용하여 SMI 방법보다 효율적인 방법을 제안한다. 제안한 방법에서는 적응 빔 형상과 검출이 하나의 구조로 실현되며 이에 피룡한 역 공분산 행렬의 Cholesky factor는 secondary 입력으로부터 GS 프로세서를 이용하여 추정한다. 제안한 구조의 중요한 특징은 공분산 행렬과 Cholesky factor를 직접 구할 필요가 없다는 점이며, 또한 GS 프로세서의 장점을 이용한 systolic 구조를 사용함으로써 효율적인 계산을 수행할 수 있다. 모의 실험을 통하여 제안한 방법의 성능과 SMI 방법의 성능을 서로 비교하였다. 또한 nonhomogeneous 환경에서 동작하기 위한 방법이 제시되었으며, 아울러 계산량이 많은 GS 구조의 단점을 극복하기 위해 lattice-GS 구조를 이용하는 방법을 제안하였다.

  • PDF

A Fast Moving Object Tracking Method by the Combination of Covariance Matrix and Kalman Filter Algorithm (공분산 행렬과 칼만 필터를 결합한 고속 이동 물체 추적 방법)

  • Lee, Geum-boon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1477-1484
    • /
    • 2015
  • This paper proposes a robust method for object tracking based on Kalman filters algorithm and covariance matrix. As a feature of the object to be tracked, covariance matrix ensures the continuity of the moving target tracking in the image frames because the covariance is addressed spatial and statistical properties as well as the correlation properties of the features, despite the changes of the form and shape of the target. However, if object moves faster than operation time, real time tracking is difficult. In order to solve the problem, Kalman filters are used to estimate the area of the moving object and covariance matrices as a feature vector are compared with candidate regions within the estimated Kalman window. The results show that the tracking rate of 96.3% achieved using the proposed method.

Direction Finding of Multiple Incoherent Signals Using Matrix Property Mapping (행렬특성매핑을 이용한 다중인코히어런트 신호의 방향탐지)

  • 김영수;이상윤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.5B
    • /
    • pp.623-631
    • /
    • 2001
  • 본 논문에서는 등간격 선형어레이로 입사한 인코히어런트신호의 도래각을 추정하기 위하여 행렬특성매핑을 기본으로 한 알고리듬을 제안한다. 알로리듬의 기본 개념은 공분산 행렬 초정값과 Frobenius norm 면에서 가장 가까운 공분산 행렬 (혹은 스펙트럼 밀도행렬)을 찾는 것이다. 제안된 알고리듬의 우수한 성능을 보여주기 위하여 협대역 신호인 경우에는 MUSIC과 광대역 신호인 경우에는 CSM-MUSIC과 컴퓨터 시뮬레이션을 통하여 통계적 성능을 비교하였다.

  • PDF