• Title/Summary/Keyword: 공극탄성계수 측정

Search Result 19, Processing Time 0.027 seconds

Mechanical Characteristics of Basalt in Jeju Island with Relation to Porosity (공극률에 따른 제주도 현무암의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Youngchan;Yang, Soonbo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1215-1225
    • /
    • 2014
  • Volcanic rocks formed from magma near the earth surface commonly show vesicular structures due to exsolution of gaseous phases in magma. The distinction and the amount of vesicles are greatly various, but there are few researches on the effect of volume percentage of vesicles on the mechanical properties. In this study, mechanical characteristics of volcanic rocks in relation to the porosity are investigated through experimental tests with Jeju basalt. Two methods (the buoyancy method and the caliper method) are adopted for measuring porosity. And unconfined compressive strength, elastic modulus, tensile strength, and elastic wave velocity are plotted against porosity in order to propose the empirical relations after the regression analysis. Also, unconfined compressive strength and the elastic modulus in relation to the elastic wave velocity are proposed with the analysis. In the case of vesicular rocks with more than 5% porosity, it is found that the buoyancy method provides more accurate estimation of porosity than the caliper method. The unconfined compressive strength, the elastic modulus, and the elastic wave velocity decrease curvilinearly with increasing in porosity. Also, the unconfined compressive strength and the elastic modulus increase linearly with increasing in elastic wave velocity.

A Pilot study of poroelastic modulus measurement in micro-bone tissue (미세 골조직의 공극탄성계수 측정을 위한 예비 연구)

  • 박영환;홍정화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1038-1041
    • /
    • 2004
  • In this study, developed a micro-level experimental setup to measure pore pressure and poroelastic modulus in various strain and strain rate about a stress in micro-structure of bone tissue. It is essential device in the development of the model to analysis the interstitial bone fluid flow of the lacuno-canalicular system to be known that would effect on the bone remodeling. The constitution of the experimental setup is as follows, microscopic image processing system; actuator control unit; load measurement system. A pilot study was used an artificial chemical wood to have similar poroelastic property of bone matrix and conducted to validate the suitability of the measurement system.

  • PDF

An Experimental Study on the Ultrasonic Testing for Determinig Dynamic Soil Moduli (초음파를 이용한 흙의 동적계수측정에 관한 실험적 연구)

  • 민덕기;김문득
    • Geotechnical Engineering
    • /
    • v.7 no.1
    • /
    • pp.7-14
    • /
    • 1991
  • Determination of dynamic shear modulus of soil was made by measuring directly the velocity of ultrasonic shear waves transmitted through the specimen. The PUNDIT, a generator and detector of ultrasonic waves, has been used to measure the propagation velocity. Forty -six tests of compacted soil at seven different void ratios and seven varying degrees of saturation with four types of materials were made in this study. The primary importance in this study was the investigation of the relations among the para meters which influenced G-modulus, As a results of analysis, the dynamic shear modulus of soil tends to decrease with an increase of void ratio, and also it is affected by soil types. In case of using PUNDIT, the proper range of the specimen length is from 5cm to 8cm. And the degree of saturation doesn't affect the dyn- amic shear modulus of soil.

  • PDF

고밀도 플라즈마를 이용한 STI 공정에 적용되는 $SiO_2$ 절연막의 균일성 연구

  • Kim, Su-In;Lee, Chang-U;Hong, Sun-Il
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.183-183
    • /
    • 2010
  • 최근 고밀도 플라즈마(High Density Plasma, HDP)를 이용하여 STI (shallow trench Isolation) 공정에 사용하기 위한 높은 종횡비를 가지는 갭을 공극 없이 절연물질로 채우는 HDP CVD 법이 개발되어 사용되고 있으며, HDP 공정에서는 그 증착 과정 중에 스퍼터링(Sputtering)에 의한 식각이 동시에 발생하기 때문에 높은 종횡비를 가지는 갭을 공극 없이 채우는 것이 가능하게 되었다. 이러한 특성을 이용하여 HDP CVD 공정은 주로 STI 와 알루미늄 배선간의 갭을 실리콘 산화막 ($SiO_2$)의 절연막으로 채우는 데 주로 사용되고 있다. 이 논문에서는 새로 개발된 HDP CVD 법을 적용하여 300 mm Si 웨이퍼에 $SiO_2$ 절연막을 증착하여 웨이퍼의 중심과 가장자리의 deposition uniformity를 nano-indenter system을 이용하여 연구하였으며, 그 결과 300 mm 웨이퍼에서 균일한 탄성계수 값이 측정되었다. 또한 HDP CVD로 제작된 SiO2 박막의 탄성계수 값이 99 - 107 GPa로 측정되어 기존 PECVD-$SiO_2$ 박막보다 약 10 - 20% 향상된 것을 확인하였다.

  • PDF

An Experimental Study on Measurement Method for Grain Bulk Modulus of Sandstone (사암의 입자 체적계수 측정 방법에 대한 실험적 연구)

  • Min-Jun Kim;Eui-Seob Park;Chan Park;Junhyung Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.2
    • /
    • pp.71-82
    • /
    • 2023
  • This study presents a direct measurement method for grain bulk modulus, which is important hydraulic-mechanical properties of rock, and conducts the experiment to investigate the grain bulk modulus of sandstone. In addition, the factors affecting the grain bulk modulus were investigated, comparing volumetric characteristics of rocks with different properties. As a result of the experiment, it was confirmed that the theoretically estimated bulk modulus is overestimated than the direct measured one. The possibility of the difference was analyzed, discussing the existence of non-connected pore space due to particle structure of the rock. Finally, the experimental results showed that the direct measurement suggested in this study can reliably predict the grain bulk modulus of sandstone.

Comparison of Void Content between Cyldrical Concrete Specimen and Concrete Core Specimen Using ASTM C 642 Test Procedure (ASTM C 642 시험방법을 이용한 구조체 코어공시체와 원주형 공시체의 공극률 비교 평가)

  • Son, Joeng Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.631-640
    • /
    • 2022
  • Recently, construction accidents have occurred due to illegal water addition and insufficient quality control at domestic construction sites. In this study, the void content test method proposed in ASTM C 642 was used to provide a reference guideline for evaluation on the quality control status of cast-in-place structural concrete. For this purpose, simulated structural concrete for coring purpose was prepared in addition to the concrete cylindrical specimens with the same formulation, and the changes in compressive strength, elastic modulus, and void content related to coring were evaluated. According to experimental results, the compressive strength and modulus of elasticity were reduced by coring, which was associated with the generation of microcracks during coring. With respect to void content, the difference in void content between the cylindrical specimen and the cored specimen was up to 1.69%. If this value is used as a correction factor, it is possible to estimate the real void content of the cast-in-place structural concrete. By comparing this with the void content obtained from cylindrical concrete specimens, it is possible to evaluate the quality control status and amount of illegal water addition on the structural concrete.

Effects of Temperature and Water Pressure on the Material Properties of Granite & Limestone from Gagok Mine (온도와 수압이 가곡광산 화강암과 석회암의 물성에 미치는 영향)

  • Yoon, Yong-Kyun;Baek, Young-Jun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • This study focuses on having a temperature and water pressure effects on the change of material properties of rocks. Granite and limestone specimens from Gagok Mine were thermally treated with predetermined temperatures of 200, 300, 400, 500, 600 and $700^{\circ}C$ (excepting $700^{\circ}C$ for limestone) to estimate the reduction of material properties of rocks caused by heat. Specific gravity, effective porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus and Poisson's ratio for pre-heated specimens were measured. With increasing temperature, material properties of both rock specimens change sequentially. Significant changes of specific gravity, effective porosity and elastic wave porosity occur above $400^{\circ}C$ for granite and $300^{\circ}C$ for limestone. Changes of uniaxial compressive strength, Young's modulus and Poisson's ratio seem to be similar to those of physical properties. GSI of 500, 600 and $700^{\circ}C$ specimens inferred by using uniaxial compressive strength and Young's modulus of preheated granite specimens is found to be 81, 66 and 58 each. In case of pre-heated limestone specimens of 400, 500 and $600^{\circ}C$, the corresponding GSI is 76, 71 and 65 each. 500, 600 and $700^{\circ}C$ granite specimens and 400, 500 and $600^{\circ}C$ limestone specimens were pressurized to 7.5 MPa and their effective porosity, elastic wave velocity, uniaxial compressive strength and Young's modulus were measured. The average value of material properties (mentioned above) of 500, 600 and $700^{\circ}C$ granite specimens under water pressure compared with material properties of non-pressurized pre-heated specimens exhibits the reduction of 7.6, 11.3 and 14.9%, respectively. In case of 400, 500 and $600^{\circ}C$ limestone specimens under water pressure, the average value of material properties decreases by 8.2, 13.8 and 21.9%, respectively.

Quality of Building Stones by Physical Properties (물성에 의한 석재의 품질도)

  • 박덕원
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • Building stones are used mainly as a material for making decoration and sculpture, and consequently they must have predominant physical properties extensively. Among various physical properties, the coefficient of pore dominates the usefulness of building stones, so the plans were made for establishing the quality classification of building stones with respect to the nature of pore. For this study, bore-hole core samples according to the depth of the biotite granites and the granitic gneiss were applicated. From the related chart between porosity and absorption ratio, Mungyeong granitic gneiss($Gn_1$) shows the widest phase of distribution in the range of measurement values, and the values decrease in the order of Pocheon granite($Gr_2$) and Mungyeong granite($Gr_1$) in the range. The strength of each rock mass varies with the degree of alteration. Also in correlation between compressive strength and tensile strength, the range of measurement values decrease in the order of $Gn_1$, $Gr_2$and $Gr_1$. Porosity is adopted as a representative physical property for establishing the quality classification of building stones, and then relative evaluation was made with regard to various physical properties. From the related chart between porosity(n)-specific gravity(G), absorption ratio(Ab), compressive strength(${\sigma}_{c}$), tensile strength(${\sigma}_{t}$), shore hardness(Hs) and Young's modulus($E_{t}$), standard of each grade is established.

Seismic Velocity Change Due to Micro-crack Accumulation of Rock Samples from Seokmo Island, Korea (손상 진행에 따른 석모도 암석 시험편의 탄성파속도 변화)

  • Lee, Sang-Kyu;Choi, Ji-Hyang;Cheon, Dae-Sung;Lee, Tae-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.324-334
    • /
    • 2011
  • Seismic wave velocity change has been monitored due to the accumulation of micro-cracks by uniaxial loads on the rock samples from Seokmo Island with stepwise increase in 5 stages. After the load was applied up to 95% of UCS, P- and S-wave velocities varied in ranges of 0.9 ~ 18.3% and 2.8 ~ 14.8% of fresh rock sample velocities, respectively. Unlike seismic velocity of the dry rock samples that showed overall decreases after the loading, velocity changes of saturated rock samples were much more complicated. These seemed to be due to the mixture of two contradictory mechanisms; i.e. accumulation of micro-crack causes an increase in porosity and a decrease in wave velocity, while saturation causes an increase in wave velocity. Most of tested rocks showed a trend of velocity increase with low axial load and then velocity decrease at later stages. Starting stage of velocity decrease differs from samples to samples. After the failure of rock occurred, noticeable increases of porosity and decreases of wave velocity have been observed. It showed overall trend that the more the quartz contents and the lower the silicate, the higher the Young's modulus.

Variation of the Physical-microstructural Properties of Sandstone and Shale Caused by CO2 Reaction in High Pressure Condition (고압 이산화탄소 반응에 의한 사암과 셰일의 물리적-미세구조적 변화)

  • Park, Jihwan;Son, Jin;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2016
  • Underground $CO_2$ storage technology is one of the most effective methods to reduce atmospheric $CO_2$. In this study, $CO_2$ storage condition was simulated in the laboratory. Sandstone and shale specimens were saturated in 1M NaCl and were reacted at $45^{\circ}C$, 10 atm for 4 weeks. The physical and microstructural properties of rock specimens were measured. Variations on physical properties of shale specimens were bigger than those of sandstone specimens, such as volume, density, elastic wave velocity, Poisson's ratio and Young's modulus. Microstructure were analyzed using X-ray computed tomography. Total number of pores were decreased, and average volume, average area and average equivalent diameter of each pore were changed after $CO_2$ reaction. Swelling and leakage of clay mineral caused by $CO_2$-mineral reaction were the reason of changes. The results of this study can be applied to predict the physical and microstructural changes in underground $CO_2$ storage condition.