DOI QR코드

DOI QR Code

사암의 입자 체적계수 측정 방법에 대한 실험적 연구

An Experimental Study on Measurement Method for Grain Bulk Modulus of Sandstone

  • 김민준 (한국지질자원연구원 심층처분환경연구센터 ) ;
  • 박의섭 (한국지질자원연구원 심층처분환경연구센터) ;
  • 박찬 (한국지질자원연구원 심층처분환경연구센터 ) ;
  • 최준형 (한국지질자원연구원 심층처분환경연구센터 )
  • Min-Jun Kim (Deep Subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Eui-Seob Park (Deep Subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Chan Park (Deep Subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Junhyung Choi (Deep Subsurface Storage and Disposal Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2023.02.19
  • 심사 : 2023.03.13
  • 발행 : 2023.04.30

초록

본 연구에서는 암반 수리-역학적 관계의 기본모델 입력인자인 암석 입자 체적계수에 대하여 직접적인 측정 실험법을 제시하고, 실험을 수행함으로써 암석 입자 체적계수를 도출하였다. 또한, 서로 다른 기하학적 특성을 가진 암석에 대하여 암석 입자 체적계수를 비교함으로써 입자 체적계수에 영향을 미치는 요인에 대해 살펴보았다. 실험 결과 이론적으로 추정하는 암석 입자 체적계수의 값이 실제보다 과대예측 하고 있음을 확인하였으며, 이에 대해 암체 입자 구조에 따른 암석 내부 고립돼있는 공극의 존재로 인한 가능성을 고찰하였다. 최종적으로, 본 연구에서 제시한 직접적인 측정방법이 사암의 입자 체적계수를 신뢰성 있게 예측할 수 있음을 확인하였다.

This study presents a direct measurement method for grain bulk modulus, which is important hydraulic-mechanical properties of rock, and conducts the experiment to investigate the grain bulk modulus of sandstone. In addition, the factors affecting the grain bulk modulus were investigated, comparing volumetric characteristics of rocks with different properties. As a result of the experiment, it was confirmed that the theoretically estimated bulk modulus is overestimated than the direct measured one. The possibility of the difference was analyzed, discussing the existence of non-connected pore space due to particle structure of the rock. Finally, the experimental results showed that the direct measurement suggested in this study can reliably predict the grain bulk modulus of sandstone.

키워드

과제정보

본 연구는 한국지질자원연구원의 기본사업인 '심지층 개발과 활용을 위한 지하심부 특성평가 기술개발(과제코드 GP2020-010)' 및 원자력안전위원회의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국원자력안전재단(2109092-0121-WT112)의 지원을 받았습니다.

참고문헌

  1. ASTM, 1986, Standard Test Method For Unconfined Compressive Strength of Intact Rock Core Specimens, ASTM D2938, American Society for Testing Materials, West Conshohocken, Philadelphia.
  2. Belmokhtar, M., Delage, P., Ghabezloo, S., Tang, A. M., Menaceur, H., and Conil, N., 2017, Poroelasticity of the Callovo-Oxfordian Claystone, Rock mechanics and Rock Engineering, 50, 871-889. https://doi.org/10.1007/s00603-016-1137-3
  3. Biot, M. A., 1941, General theory of three-dimensional consolidation. Journal of Applied Physics, 12, 155-164. https://doi.org/10.1063/1.1712886
  4. Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, Journal of the Acoustical Society of America, 28(2), 168-178. https://doi.org/10.1121/1.1908239
  5. Blanco-Martin, L., Wolters, R., Rutqvist, J., Lux, K. H., and Birkholzer, J. T., 2016, Thermal hydraulic mechanical modeling of a large-scale heater test to investigate rock salt and crushed salt behavior under repository conditions for heat-generating nuclear waste, Computers and Geotechnics, 77, 120-133. https://doi.org/10.1016/j.compgeo.2016.04.008
  6. Cheon, D. S., Song, W. K., Kihm, Y, H., Choi, S., Lee, S. K., Hyun, S. P., and Suk, H., 2022, Geoscientific Research of Bedrock for HLW Geological Disposal using Deep Borehole, Tunnel and Underground Space, 32(6), 435-450. https://doi.org/10.7474/TUS.2022.32.6.435
  7. Cheon, D. S., Takahashi, M., and Kim, T., 2021, Permeability differences based on three-dimensional geometrical information of void space, Journal of Rock Mechanics and Geotechnical Engineering, 13, 368-376. https://doi.org/10.1016/j.jrmge.2020.04.008
  8. Cho, W. J., Kim, J. S., Lee, C., and Choi, H. J., 2012, Current Status of the Numerical Models for the Analysis of Coupled Thermal-Hydrological-Mechanical Behavior of the Engineered Barrier System in a High-level Waste Repository, Journal of Nuclear Fuel Cycle and Waste Technology, 10(4), 281-294. https://doi.org/10.7733/jkrws.2012.10.4.281
  9. Deer, A., Howie, W. A., and Zussman, J., 1997, Rock-Forming Minerals: Single-Chain Silicates, Geological Society of London, Volume 2A.
  10. Haimson, B., and Lee, H., 2004, Borehole breakouts and compaction bands in two high-porosity sandstones, International Journal of Rock Mechanics & Mining Sciences, 41, 287-301. https://doi.org/10.1016/j.ijrmms.2003.09.001
  11. Hart, D. J., and Wang, H. F., 1995, Laboratory measurements of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone, Journal of Geophysical Research, 100(B9), 17741-17751. https://doi.org/10.1029/95JB01242
  12. Hart, D. J., and Wang, H. F., 2010, Variation of unjacketed pore compressibility using Gassmann's equation and an overdetermined set of volumetric poroelastic measurements, Geophysics, 75(1), N9-N18. https://doi.org/10.1190/1.3277664
  13. Ishutov, S., Hasiuk, F. J., Harding, C., and Gray, J. N., 2015, 3D printing sandstone porosity models, Interpretation, 3(3), SX49-SX61. https://doi.org/10.1190/INT-2014-0266.1
  14. ISRM, 2016, Suggested Method for Uniaxial-Strain Compressibility Testing for Reservoir Geomechanics, Rock Mechanics and Rock Engineering, 49, 4153-4178. https://doi.org/10.1007/s00603-016-1055-4
  15. Jeong, H., Yim, J., Min, K. B., Kwon, S., Choi, S., and Shin, Y. J., 2022, Case Studies of Indirect Coupled Behavior of Rock for Deep Geological Disposal of Spent Nuclear Fuel, Tunnel and Underground Space, 32(6), 411-434. https://doi.org/10.7474/TUS.2022.32.6.411
  16. Kahraman, S., Gunaydin, O., and Fener, M., 2005, The effect of porosity on the relation between uniaxial compressive strength and point load index, International Journal of Rock Mechanics & Mining Sciences, 42, 584-589. https://doi.org/10.1016/j.ijrmms.2005.02.004
  17. KSRM, 2005, Standard test method for uniaxial compressive strength of rock, Tunnel and Underground Space, Korean Society for Rock Mechanics, 15(2), 85-86.
  18. KSRM, 2006, Standard test method for porosity and density of rock, Tunnel and Underground Space, Korean Society for Rock Mechanics, 2(61), 95-98.
  19. Lau, J. S. O., and Chandler, N. A., 2004, Innovative laboratory testing, International Journal of Rock Mechanics & Mining Sciences, 41, 1427-1445. https://doi.org/10.1016/j.ijrmms.2004.09.008
  20. Lee, C., Cho, W., Lee, J., and Kim, G. Y., 2019, Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2-MP/FLAC3D Simulator, Journal of the Nuclear Fuel Cycle and Waste Technology, 17(2), 183-202. https://doi.org/10.7733/jnfcwt.2019.17.2.183
  21. Makhnenko, R. M., and Labuz, J. F., 2013, Unjacketed bulk compressibility of sandstone in laboratory experiments, Fifth Biot Conference on Poromechanics, Vienna, Austria, Poromechanics volume, 481-488.
  22. Makhnenko, R. M., and Labuz, J. F., 2016, Elastic and inelastic deformation of fluid-saturated rock, Philosophical Transactions A, 374, 20150422.
  23. Mavko, G., Mukerji, T., and Dvorkin, J., 2020, The rock physics handbook (3rd ed.), Cambridge University Press.
  24. MTS, 2000, Circumferential Extensometer Strain Calculations, MTS Systems Corporation, USA.
  25. Park, C., Kim, T., Park, E. S., Jung, Y. B., and Bang, E. S., 2019, Development and Verification of OGSFLAC Simulator for Hydromechanical Coupled Analysis: Single-phase Fluid Flow Analysis, Tunnel and Underground Space, 29(6), 468-479. https://doi.org/10.7474/TUS.2019.29.6.468
  26. Park, D., and Park, C., 2022, Performance Evaluation of OGS-FLAC Simulator for Coupled Thermal-Hydrological-Mechanical Analysis, Tunnel and Underground Space, 32(2), 144-159. https://doi.org/10.7474/TUS.2022.32.2.144
  27. Qin, X., Han, D. H., and Zhao, L., 2022, Measurement of Grain Bulk Modulus on Sandstone Samples From the Norwegian Continental Shelf, Journal of Geophysical Research: Solid Earth, 127, e2022JB024550.
  28. Rutqvist, J., 2020, Thermal management associated with geologic disposal of large spent nuclear fuel canisters in tunnels with thermally engineered backfill, Tunnelling and Underground Space Technology, 102, 103454.
  29. Rutqvist, J., Barr, D., Birkholzer, J. T., Fujisaki, K., Kolditz, O., Liu, Q. S., Fujika, T., Wang, W., and Zhang, C. Y., 2009, A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories, Environmental Geology, 57, 1347-1360. https://doi.org/10.1007/s00254-008-1552-1
  30. Selvadurai, A. P. C., 2021, On the Poroelastic Biot Coefficient for a Granitic Rock, Geosciences, 11(5), 219.
  31. Tarokh, A., Detournay, E., and Labuz, J., 2018, Direct measurement of the unjacketed pore modulus of porous solids, Proceedings of the Royal Society A, 474, 20180602.
  32. Yoon, S., Cho, W., Lee, C., and Kim. G. Y., 2018, Thermal Conductivity of Korean Compacted Bentonite Buffer Materials for a Nuclear Waste Repository, Energies, 11, 2269.
  33. Yoon, S., Jeon, J. S., Kim, G. Y., Seong, J. H., and Baik, M. H., 2019, Specific Heat Capacity Model for Compacted Bentonite Buffer Materials, Ann. Nucl. Energy, 125, 18-25. https://doi.org/10.1016/j.anucene.2018.10.045
  34. Yoon, S., Kim, M. S., Kim, G. Y., and Lee, S. R., 2021, Contemplation of Relative Hydraulic Conductivity for Compacted Bentonite in a High-Level Radioactive Waste Repository, Ann. Nucl. Energy, 161, 108439.
  35. Youn, D. J., Sun, C., and Zhung, L., 2022, Numerical Analysis of Laboratory Heating Experiment on Granite Specimen, Tunnel and Underground Space, 32(6), 558-567.