• Title/Summary/Keyword: 공극시험

Search Result 427, Processing Time 0.024 seconds

Infiltration Characteristics of Tracer Wetting Front through Effective Pores of Unsaturated Soil (불포화토 유효공극 내 추적자 침윤선 거동 특성 평가)

  • Kim, Man-Il;Nishigaki, Makoto
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.41-47
    • /
    • 2007
  • Geotechnical Phenomena such as landslide, groundwater recharge and groundwater fluctuation due to rainfall can be explain to use a dielectric response and infiltration variation by the movement of a wetting front in the subsurface. The infiltration of a wetting front is infiltrating to the connected pores which are distributed in unsaturated soil. In this study we carried out to laboratory experiment of a vertical infiltration column test using ethanol mix-ing tracer which has same the specific gravity of water. All physical values are detected to use a variation of dielectric constant and calculated to use a dielectric mixing model and tracer test model. This dielectric method measured by each dielectric constant of geological soil porous materials should be of for the geotechnical information and useful a field monitoring technique for detecting the variations of the volumetric water content and the wetting front, which are insignificant the key parameter to understanding the landslide by rainfall.

Effect of Void Formation on Strength of Cemented Material (고결 지반 내에 형성된 공극이 강도에 미치는 영향)

  • Park, Sung-Sik;Choi, Hyun-Seok;Kim, Chang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2C
    • /
    • pp.109-117
    • /
    • 2010
  • Gas hydrate dissociation can generate large amounts of gas and water in gas hydrate bearing sediments, which may eventually escape from a soil skeleton and form voids within the sediments. The loss of fine particles between coarse particles or collapse of cementation due to water flow during heavy or continuous rainfall may form large voids within soil structure. In this study, the effect of void formation resulting from gas hydrate dissociation or loss of some particles within soil structure on the strength of soil is examined. Glass beads with uniform gradation were used to simulate a gas hydrate bearing or washable soil structure. Glass beads were mixed with 2% cement ratio and 7% water content and then compacted into a cylindrical sample with five equal layers. Empty capsules for medicine are used to mimic large voids, which are bigger than soil particle, and embedded into the middle of five equal layers. The number, direction, and length of capsules embedded into each layer vary. After two days curing, a series of unconfined compression tests is performed on the capsule-embedded cemented glass beads. Unconfined compressive strength of cemented glass beads with capsules depends on the volume, direction and length of capsules. The volume and cross section formed by voids are most important factors in strength. An unconfined compressive strength of a specimen with large voids decreases up to 35% of a specimen without void. The results of this study can be used to predict the strength degradation of gas hydrate bearing sediments in the long term after dissociation and loss of fine particles within soil structure.

Performance Evaluation of Asphalt Concrete Pavements at Korea Expressway Corporation Test Road (시험도로 아스팔트 포장의 공용성 변화 분석)

  • Seo, Youngguk;Kwon, Soon-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.35-43
    • /
    • 2008
  • This paper mainly deals with the performance evaluation of 33 asphalt sections of Korea Expressway Corporation Test Road (KECTR) during the past four years. Since the construction of the KECTR in December 2002, key performance indicators of asphalt pavements have been collected five times with an Automatic Road Analyzer (ARAN), and have been analyzed for permanent deformation, surface distress, and road roughness. Linear viscoelastic characteristics of four dense graded HMAs used in KECTR were investigated with a series of complex modulus test. The effect of air void in HMAs on dynamic modulus was investigate at two air void contents for a surface course HMA (19 mm Nominal Maximum Size of Aggregate). Layer densification due to traffic was estimated from air void contents of field cored samples, and was correlated with pavement distresses and performances. One of findings of this study was that both permanent deformation and cracking were suspectible to pavement temperatures, rather than traffic. However, it was found that road roughness was mostly affected by traffic loading.

Mechanical Characteristics of Basalt in Jeju Island with Relation to Porosity (공극률에 따른 제주도 현무암의 역학적 특성)

  • Moon, Kyoungtae;Park, Sangyeol;Kim, Youngchan;Yang, Soonbo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1215-1225
    • /
    • 2014
  • Volcanic rocks formed from magma near the earth surface commonly show vesicular structures due to exsolution of gaseous phases in magma. The distinction and the amount of vesicles are greatly various, but there are few researches on the effect of volume percentage of vesicles on the mechanical properties. In this study, mechanical characteristics of volcanic rocks in relation to the porosity are investigated through experimental tests with Jeju basalt. Two methods (the buoyancy method and the caliper method) are adopted for measuring porosity. And unconfined compressive strength, elastic modulus, tensile strength, and elastic wave velocity are plotted against porosity in order to propose the empirical relations after the regression analysis. Also, unconfined compressive strength and the elastic modulus in relation to the elastic wave velocity are proposed with the analysis. In the case of vesicular rocks with more than 5% porosity, it is found that the buoyancy method provides more accurate estimation of porosity than the caliper method. The unconfined compressive strength, the elastic modulus, and the elastic wave velocity decrease curvilinearly with increasing in porosity. Also, the unconfined compressive strength and the elastic modulus increase linearly with increasing in elastic wave velocity.

Physical Properties of Sedimentary Rocks containing Dinosaur Trace Fossils in the Haenam: A Relationship with Chert Content (해남 공룡화석 지 퇴적암의 물리적 성질: 쳐트 함량과의 관계)

  • 조현구;김수진;장세정
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2002
  • The physical properties of Uhangri sedimentary rocks were investigated to provide the conservation strategy of Dinosaur trace fossil in the Haenam. The porosity, void ratio, dry density, water content, and degree of saturation were calculated according to the proper laboratory experiments for 9 sedimentary specimens. The flexural strength (or modulus of rupture) and thermal expansion coefficient were measured using the universal testing machine and dilatometer, respectively. The Uhangri sedimentary rocks have very low porosity, void ratio, and water content. The flexural strength of shales are 24.16~42.84, and those of sandstones are 16.34~ $43.52N/mm^2$, which are much weaker than common sedimentary rocks. The very low flexural strength of sedimentary rocks despite very low porosity, is ascribed to fine fissures in the rocks. The thermal expansion coefficient of rocks were $14.7~21.3\Times10^{-6 }$, which are 2~2.5 times as high as alumina and about 10 times as high as talc. As the content of chert in the sandstone increases, the porosity, void ratio, and water content increase, while the dry density and degree of saturation decrease. The chert-bearing sandstone have higher porosity and thermal expansion coefficient, and lower flexural strength compared to those free of chert.

Development of Asphalt Concrete Rutting Model by Triaxial Compression Test (삼축압축시험을 이용한 아스팔트 혼합물의 소성변형 파손모형 개발)

  • Lee, Kwan-Ho;Hyun, Seong-Cheol
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • This study intends to evaluate of the characteristics of pavement deformation and develop the model for prediction model in the asphalt layer using a regression analysis. In test, there are two different asphalt binders and 5 different aggregate types. The air voids of hot mix asphalt are 6% and 10% for target value. Repeated triaxial compression test with 3 different confining pressures was used for test at 3 different test temperatures. It is going to verify the main parameters for permanent deformation of HMA and to develop the distress model. This paper is to figure out the factor affecting the pavement deformation, and then to develop model the pavement deformation for asphalt mixture. Also, the reliability of prediction model has been studied. The permanent deformation prediction model for asphalt mixtures with temperature, loading time, and air voids has been developed and the proposed permanent deformation prediction model has been validated by using the multiple regression approach which is called Statistical Package for the Social Sciences(SPSS).

Variation of Physical and Microstructural Properties of Limestone caused by Artificial Freezing and Thawing (인공 동결-융해 풍화에 따른 석회암의 물성 및 미세구조 변화 분석)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.435-449
    • /
    • 2015
  • Physical and microstructural properties of Pungchon and Maggol limestone were investigated quantitatively during 50 cycles of artificial freezing and thawing test. There were decrease in dry weight and P,S-wave velocity, and increase in absorption rate in both rock types. Porosity, pore volume, equivalent diameter, throat thickness and pore orientation were analyzed using X-ray computed tomography images. Porosity increased, and initiation and expansion of pores were investigated as weathering progresses. Physical and microstructural variation in Maggol limestone was larger than that of Pungchon limestone because Maggol limestone has more pores and microcracks at initial state. As this study analyzes physical and microstructural properties of rock specimens comprehensively, it can be applied to further rock weathering study and can be used as fundamental data of construction and resource development in cold regions.

Modeling on Ultrasonic Velocity in Concrete Considering Micro Pore Structure and Loading Conditions (공극구조 및 하중조건에 따른 콘크리트의 초음파 속도 모델링)

  • Kim, Yun Yong;Oh, Kwang-Chin;Park, Ki-Tae;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.415-426
    • /
    • 2015
  • For a long time, evaluation of soundness and strength in concrete has been performed through ultrasonic velocity(UV), which is essential work in field assessment. Porosity in concrete is a major parameter indicating durability and strength, and UV passing concrete depends on porosity variation. In this paper, a modeling on UV through concrete is carried out considering porosity and the results are verified with those from test. Additionally UV in concrete under compression/tension loading condition is measured and UV modeling with loading condition is performed. Up to 50% of loading ratio, UV slightly increases and greatly drops at peak load in compression region, however it fluctuates in tensile region due to micro cracking in matrix. The proposed model shows a reasonable agreement with test results in control and compression region, and needs modification for tensile region considering micro cracks and local aggregate interlocking.

토양 수리특성에 따른 전기비저항 관계 규명을 위한 실내시험 결과

  • 송성호;김기주;박삼규;용환호;조인기
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.116-119
    • /
    • 2003
  • 본 연구는 전기비저항 탐사법을 이용한 실내실험의 결과를 활용하여 토양의 수리특성별 지층비저항계수를 산출하여 소유역에 대하여 대략적인 수리지질 특성을 규명하는 방안을 제시하는 것이다. 연구결과, 모래로 구성된 토양층의 경우는 본 실내시험에서 얻어진 지층비저항계수에 따른 공극율 및 수리전도도의 관계를 활용할 수 있으며, 점토가 포함된 토양층의 경우는 표면전도도의 영향으로 측정되는 전기비저항이 실제 측정값보다 낮게 나타나므로 향후 전기이중층 효과를 고려하여 개발하는 경험식의 활용이 가능할 것으로 판단된다.

  • PDF

Variations of Mechanical Properties of Hallasan Trachyte with respect to the Degree of Weathering (풍화진행에 따른 한라산조면암의 역학적 특성변화)

  • Cho, Tae-Chin;Lee, Sang-Bae;Hwang, Taik-Jean;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.287-303
    • /
    • 2009
  • Rock mass in Baekrokdam at the summit of Hallasan in Jeju island is composed of two volcanic rock types: Baekrokdam trachybasalt at the eastern region and Hallasan trachyte at the western region. On-going rockfall and subsequent collapse of Baekrokdam wall rock are closely linked to the weathering of trachyte distributed in the western region of Baekrokdam. Samples of Hallasan trachyte showing different weathering grades had been collected and the polarizing microscopic observation, X-ray diffraction analysis and analysis for chemical weathering had been conducted. Formation of secondary minerals, especially clay minerals, by chemical weathering has not been identified, but the change of chemical weathering indices indicated that chemical weathering process had been proceeded to the degree for increasing and decreasing the contents of some chemical components. Changes in physical and mechanical rock properties due to weathering has also been examined. Artificial weathering test of freezing-thawing reveals that the process of crack initiation and propagation deteriorated the mechanical characteristics of Hallasan trachyte and $D_B$ = 1.5 or porosity = $20{\sim}21%$ would be the ultimate limiting value induced by the mechanical weathering processes.