Variations of Mechanical Properties of Hallasan Trachyte with respect to the Degree of Weathering

풍화진행에 따른 한라산조면암의 역학적 특성변화

  • Published : 2009.08.31

Abstract

Rock mass in Baekrokdam at the summit of Hallasan in Jeju island is composed of two volcanic rock types: Baekrokdam trachybasalt at the eastern region and Hallasan trachyte at the western region. On-going rockfall and subsequent collapse of Baekrokdam wall rock are closely linked to the weathering of trachyte distributed in the western region of Baekrokdam. Samples of Hallasan trachyte showing different weathering grades had been collected and the polarizing microscopic observation, X-ray diffraction analysis and analysis for chemical weathering had been conducted. Formation of secondary minerals, especially clay minerals, by chemical weathering has not been identified, but the change of chemical weathering indices indicated that chemical weathering process had been proceeded to the degree for increasing and decreasing the contents of some chemical components. Changes in physical and mechanical rock properties due to weathering has also been examined. Artificial weathering test of freezing-thawing reveals that the process of crack initiation and propagation deteriorated the mechanical characteristics of Hallasan trachyte and $D_B$ = 1.5 or porosity = $20{\sim}21%$ would be the ultimate limiting value induced by the mechanical weathering processes.

한라산 정상부의 백록담 암체는 백록담조면현무암이 분포하는 동측구역과 한라산조면암이 분포하는 서측구역으로 구분된다. 백록담에서 진행되는 풍화, 암벽붕괴, 낙반은 전반적으로 백록담 서측구역에 분포하는 한라산 조면암의 풍화작용과 밀접한 연관성을 가지며, 동측구역에서는 개별 암석 블록들의 국지적 붕락현상이 발생한다. 본 연구에서는 한라산조면암 분포지역의 지질학적 특성을 조사하였으며, 풍화단계별로 조면암 시료를 채취하여 편광현미경분석, X-선 회절분석, 지화학적 분석, 공학적 특성시험을 수행하였다. SEM, XRD, XRF 분석을 통하여 2차 변질광물의 종류와 함량 및 광물조성 변화를 관찰한 결과 점토광물이 확인될 정도의 심한 화학적풍화작용은 발생하지 않았지만 풍화에 따른 화학적풍화지수와 주요원소의 함량 변화에 대한 분석 결과에 의거할때 화학성분의 용탈에 의한 미약한 화학적풍화작용이 발생한 것으로 판단된다. 풍화에 기인된 암석의 공학적특성변화를 고찰하기 위하여 밀도, 비중, 흡수율, 공극률, 탄성파속도, 일축압축강도, 슬레이크내구성지수, 동결-융해시험을 수행하였다. 인공풍화시험을 통한 균열발현 양상과 물리적 특성 측정 결과 기계적풍화작용은 미세균열 및 공극을 발달시켜 암반의 역학적 강도 저하를 야기하고 있으며, 기계적풍화 진행에 의한 추가적인 공극률 저하 양상을 고려할 때 $D_B$ = 1.5 또는 공극률 = $20{\sim}21%$ 범위에서 한라산조면암의 공학적 강도 특성이 소멸될 것으로 분석되었다.

Keywords

References

  1. 곽진철, 백환조, 2000, 풍화에 의한 국내 편마암체의 지질공학적 물성의 변화, 한국자원공학회지, 37, 262-271
  2. 김성수, 박형동, 1999, 인공풍화실험을 이용한 석재 물성의 변화 연구, 한국자원공학회지, 36, 141-149
  3. 김수진, 이민성, 김원사, 이수재, 1994, 서울지역의 자연환경 변화에 관한 연구: 남산 화강암의 풍화에 관한 환경광물학적 연구, 대한지질학회지, 30, 284-296
  4. 박기화, 이병주, 조등룡, 김정찬, 이승열, 김유봉, 이한영, 조병욱, 장영남, 손병국, 전희영, 김용욱, 2000, 서귀포,하효리도폭 지질보고서 (1:50,000), 제주도, 163p
  5. 엄정기, 조태진, 권순진, 2006, 절리암반내 지구조구 설정을 위한 정량적 기준에 대한 연구, 한국암반공학회지, 16(1), 26-37
  6. 장현식, 장보안, 이준성, 2004, 강원도 횡성군 풍암분지백악기 셰일의 동결-융해에 따른 지질공학적 특성 변화, 지질공학, 401-416
  7. 정차연, 양경희, 송시태, 2006, 한라산의 지형,지질, 한라산총서, 제주도,한라산생태문화연구소, 192p
  8. 윤선, 정차연, 송시태, 양경희, 2001, 제주도 백록담분화구벽의 구성암석, 한국고생물학회 제17차 학술발표회 논문초록집, p.18
  9. 윤선, 현원학, 정차연, 2005. 제주도 한라산의 지질, 지질학회지, 41(4), 481-497
  10. Beavis, F.C., Roberts, I., and Minskaya, L., 1982, Engineering aspects of weathering of low grade metapelites in an arid climatic zone, Quart. J. Eng. Geol., 15, 29-45 https://doi.org/10.1144/GSL.QJEG.1982.015.01.05
  11. Duncan N., and M.H. Dunne, 1967, A regional study of the development of residual soils. In: Proc. 4th Afr. Reg. Conf. on Soil Mech. Found. Eng., Cape Town, 109-119
  12. Ebuk, E.J., Hencher, S.R. and Lumsden, A.C., 1993, Determination of residual bond strength by the pulling test method. Proceedings of the Sixty International Congress of the International Association of Engineering Geology, Amsterdam, 357-362
  13. Gouveia, M.A., Prudencio, M.I., Figueiredo, M.O., Pereira, L.C.J., Waerenborgh, J.C., Morgado, I., Pena, T. and Lopes, A., 1993, Behaviour of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal [extended abstract; special issue]: Chem. Geol., 107, 293–296 https://doi.org/10.1016/0009-2541(93)90194-N
  14. Hamrol, A., 1961, A quantitative classification of the weathering and weatherability of rocks, Procedings of the Fifth International Conference on Soil Mechanics and Foundation Engineering, Paris, 2, 771-774
  15. Harnois, L. and J.M. Moore, 1988, Geochemistry and origin of the Ore Chimney Formation, a transported paleoregolith in the Grenville Province of Southern Ontario, Can. Chem. Geol., 69, 267-289 https://doi.org/10.1016/0009-2541(88)90039-3
  16. Irfan, T.Y. and W.R. Dearman, 1978a, Engineering classification and index properties of a weathered granite. Bull. of the Int. Assoc. Eng. Geol., 11, p.233-244 https://doi.org/10.1144/GSL.QJEG.1978.011.03.03
  17. Irfan, T.Y. and W.R. Dearman, 1978b, Engineering classification and index properties of a weathered granite. Bull. of the Int. Assoc. of Eng. Geol., 17, p.79-90
  18. Irfan, T.Y., 1996, Mineralogy fabric properties and classification of weathered granites in Hong Kong, Q. J. eng. Geol., 29, 5-35 https://doi.org/10.1144/GSL.QJEGH.1996.029.P1.02
  19. Jayaverdena, U. de S. and E. Izawa, 1994, A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from SriLanka, Eng. Geol., 36, 303–310 https://doi.org/10.1016/0013-7952(94)90011-6
  20. Nesbitt, H.W. and G.M. Young, 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 299, 715-717 https://doi.org/10.1038/299715a0
  21. Nicholson, D. T. and Nicholson, F. H., 2000, Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering, Earth Surface Processes and Landforms, 25, 1295-1308 https://doi.org/10.1002/1096-9837(200011)25:12<1295::AID-ESP138>3.0.CO;2-E
  22. Onodera, T.F., Yashinaka, R. and Oda, M., 1974, Weathering and its relation to mechanical properties of granite. Proceedings of the Third International Congress, Int. Soc. Rock Mech., Denver, 2, 71-78
  23. Parker, A., 1970, An index of weathering for silicate rocks, Geol. Mag., 107, 501–504 https://doi.org/10.1017/S0016756800058581
  24. Pollard, D.D., and A. Aydin, 1988, Progress in understanding jointing over the past century, Geol. Soc. of Am. Bull., 100, 1181-1204 https://doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2
  25. Reiche, P., 1943, Graphic representation of chemical weahtering, J. of Sed. Petro., 13, 58-68
  26. Selby, M.J., 1993, Hillslope materials and processes, Oxford University Press, Oxford, 451p
  27. Sharma, A., Rajamani, V., 2000. Major Element, REE, and other trace element behaviour in amphibolite eathering under semi-arid conditions in Southern India. The Journal of Geology 108, 487–496 https://doi.org/10.1086/314409
  28. Sueoka, T., 1988, Identification and classification of granitic residual soils using chemical weathering index, Second Int. Conf. Geomech. Trop. Soils, Singapore, 1, 55–61
  29. Suoeka, T., Lee, I.K., Huramatsu, M. and Imamura, S., 1985, Geomechanical properties and engineering classification for decomposed granite soils in Kaduna district, Nigeria. Proceedings of the First International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils, Brasilia, 1, 175-186
  30. Tugryl, A., 2004, The effect of weathering on pore geometry and compressive strength of selected rock types from turkey, Engineering Geology, 75, 215-227 https://doi.org/10.1016/j.enggeo.2004.05.008