DOI QR코드

DOI QR Code

Variation of Physical and Microstructural Properties of Limestone caused by Artificial Freezing and Thawing

인공 동결-융해 풍화에 따른 석회암의 물성 및 미세구조 변화 분석

  • Received : 2015.09.25
  • Accepted : 2015.10.12
  • Published : 2015.10.31

Abstract

Physical and microstructural properties of Pungchon and Maggol limestone were investigated quantitatively during 50 cycles of artificial freezing and thawing test. There were decrease in dry weight and P,S-wave velocity, and increase in absorption rate in both rock types. Porosity, pore volume, equivalent diameter, throat thickness and pore orientation were analyzed using X-ray computed tomography images. Porosity increased, and initiation and expansion of pores were investigated as weathering progresses. Physical and microstructural variation in Maggol limestone was larger than that of Pungchon limestone because Maggol limestone has more pores and microcracks at initial state. As this study analyzes physical and microstructural properties of rock specimens comprehensively, it can be applied to further rock weathering study and can be used as fundamental data of construction and resource development in cold regions.

풍촌석회암과 막골석회암을 대상으로 $-18{\sim}+32^{\circ}C$의 온도범위에서 총 50회의 인공적인 동결-융해 풍화시험을 수행하고 그로 인한 물리적 성질과 미세구조의 변화를 정량적으로 분석하였다. 두 가지 암종 모두 건조무게와 P,S파 속도는 지속적으로 감소하는 경향을 보였고, 흡수율은 증가하는 경향을 보였다. X선 단층촬영 영상분석 결과 실험 후 공극률이 증가하였으며, 공극부피, 등가직경, 국부두께, 방향성 등 여러 지표에서 공극의 생성 및 확장을 확인할 수 있었다. 막골석회암의 물리적 미세구조적 변화가 풍촌석회암에 비해 크게 나타났는데 이는 초기 상태의 막골석회암이 더 많은 공극과 미세균열을 가지고 있었기 때문으로 추정된다. 본 연구는 암석의 물리적 성질과 미세구조적 성질을 통합적으로 분석함으로써 향후 암석의 풍화 연구에 적용될 수 있을 뿐만 아니라, 저온지역의 건설, 자원개발 활동에 기초자료로써 이용될 것으로 기대된다.

Keywords

References

  1. ASTM, 2004, Standard test method for evaluation of durability of rock for erosion control under freezing and thawing conditions, D 5312-04.
  2. Bland, W. and D. Rolls, 1998, Weathering: An introduction to the scientific principles, Arnold, London, UK, 271p.
  3. Camuffo, D., 2015, Microclimate for cultural heritage : conservation, restoration, and maintenance of indoor and outdoor monuments, Elsevier, Amsterdam, Netherlands, 526p.
  4. Carlson, W.D., 2006, Three-dimensional imaging of earth and planetary materials, Earth Planet. Sci. Lett., 249, 133-147. https://doi.org/10.1016/j.epsl.2006.06.020
  5. Chatterji, S. and P. Christensen, 1979, A mechanism of breakdown of limestone nodules in a freeze-thaw environment, Cement Concrete Res., 9, 741-746. https://doi.org/10.1016/0008-8846(79)90069-3
  6. Chen, T.C., M.R. Yeung and N. Mori, 2004, Effect of water saturation on deterioration of welded tuff due to freeze-thaw action, Cold Reg. Sci. Technol., 38, 127-136. https://doi.org/10.1016/j.coldregions.2003.10.001
  7. Cho, T.C, S.B. Lee, T.J. Hwang and K.S. Won, 2009, Variations of mechanical properties of Hallasan Trachyte with respect to the degree of weathering, Tunnel & Underground Space, 19.4, 287-303.
  8. Davidson, G.P. and J.F. Nye, 1985, A photoelastic study of ice pressure in rock cracks, Cold Reg. Sci. Technol., 11, 141-153. https://doi.org/10.1016/0165-232X(85)90013-8
  9. De Kock, T., M.A. Boone, T. De Schryver, J. Van Stappen, H. Derluyn, B. Masschaele, G. De Schutter and V. Cnudde, 2015, A pore-scale study of fracture dynamics in rock using X-ray Micro-CT under ambient freeze-thaw cycling, Environ. Sci. Technol., 49, 2867-2874. https://doi.org/10.1021/es505738d
  10. Delerue, J.F., E. Perrier, Z.Y. Yu and B. Velde, 1999, New algorithms in 3D image analysis and their application to the measurement of a spatialized pore size distribution in soils, Phys. Chem. Earth (A), 24(7), 639-644. https://doi.org/10.1016/S1464-1895(99)00093-9
  11. Do, J.Y. and H.G. Cho, 2013, Study on deterioration of stone monuments constructed with carbonate rock by acid rain, J. Miner. Soc. Korea, 26.4, 273-283. https://doi.org/10.9727/jmsk.2013.26.4.273
  12. Fahey, B.D. and R.J. Gowan, 1979, Application of the sonic test to experimental freeze-thaw studies in geomorphic research, Arctic Alpine Res., 11.2, 253-260. https://doi.org/10.2307/1550649
  13. Goudie, A.S., 1999, A comparison of the relative resistance of limestones to frost and salt weathering," Permafrost Periglac. Process., 10, 309-316. https://doi.org/10.1002/(SICI)1099-1530(199910/12)10:4<309::AID-PPP330>3.0.CO;2-C
  14. Hajna, N.Z., 2003, Chemical weathering of limestones and dolomites in a cave environment, Speleogenesis Evol. Karst Aquifers, 1.3, 1-6.
  15. Hall, K., 1999, The role of thermal stress fatigue in the breakdown of rock in cold regions, Geomorphology, 31, 47-63. https://doi.org/10.1016/S0169-555X(99)00072-0
  16. ISO, 2007, Thermal-insulating materials - determination of freeze-thaw resistance, ISO 20394-2007.
  17. Jeong, J., J. Choi, B.G. Chae and B.A. Jang, 2013, CLSM analysis of change in roughness and physical properties of granite after freeze-thaw experiments, J. Eng. Geol., 23.3, 271-281. https://doi.org/10.9720/kseg.2013.3.271
  18. Kang, S.S., J.I. Kim, Y. Obara and A. Hirata, 2011, Estimation of weathering characteristics of sandstone and andesite by freeze-thaw test, Tunnel & Underground Space, 21.2, 145-150.
  19. Kim, S.S. and H.D. Park, 1999, A study on the change of rock properties using artificial weathering test, J. Kor. Soc. Min. Ener. Res., 36.2, 141-149.
  20. KSRM, 2005, Standard test method of rock, CIR, Seoul, Korea, 123p.
  21. Kump, L.R., S.L. Brantley and M.A. Arthur, 2000, Chemical weathering, atmospheric $CO_2$, and climate, Annu. Rev. Earth Planet. Sci., 28, 611-667. https://doi.org/10.1146/annurev.earth.28.1.611
  22. Lautridou, J.P. and J.C. Ozouf, 1982, Experimental frost shattering: 15 years of research at the Centre de Geomorphologie du CNRS, Prog. Phys. Geogr., 6, 215-232. https://doi.org/10.1177/030913338200600202
  23. Matsuoka, N., 1990, Mechanisms of rock breakdown by frost action: an experimental approach, Cold Reg. Sci. Technol., 17, 253-270. https://doi.org/10.1016/S0165-232X(05)80005-9
  24. Nicholson, D.T. and F.H. Nicholson, 2000, Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering, Earth Surf. Process. Landforms, 25, 1295-1307. https://doi.org/10.1002/1096-9837(200011)25:12<1295::AID-ESP138>3.0.CO;2-E
  25. Park, B.K. and S.J. Han, 1986, Middle Cambrian ooid shoal deposits: The oolitic carbonate rocks of lower Pungchon limestone formation, Korea, J. Geol. Soc. Korea, 22.3, 183-199.
  26. Park, J., C.U. Hyun and H.D. Park, 2014, Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action, Bull. Eng. Geol. Environ., 74, 555-565.
  27. Park, J.H., C.U. Hyun and H.D. Park, 2010, Freeze-thaw cycle test on rocks for the1simulated environment of the King Sejong Station, Antarctica, J. KSMER, 47.5, 731-742.
  28. Park, Y.J., K.H You, K.Y. Yang, I. Woo, C. Park and W.K. Song, 2003, Weathering characteristics of granite by freeze-thaw cyclic test, Tunnel & Underground Space, 13.3, 215-224.
  29. Potts, A.S., 1970, Frost action in rocks: some experimental data, Transactions of the Institute of British Geographers, 49, 109-124.
  30. Ruedrich, J., D. Kirchner and S. Siegesmund, 2011, Physical weathering of building stones induced by freeze-thaw action: a laboratory long-term study, Environ. Earth Sci., 63, 1573-1586. https://doi.org/10.1007/s12665-010-0826-6
  31. Ruiz de Argandona, V.G., A. Rodriguez Rey, C. Celorio, L.M. Suarez del Rio, L. Calleja and J. Llavona, 1999, Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24.7, 633-637. https://doi.org/10.1016/S1464-1895(99)00092-7
  32. Ryu, J.C., S.J. Do and S.G. Choi, 1997, Carbonate breccias of the lower Ordovician Maggol limestone: Its genetic origin and stratigraphic significance, J. Geol. Soc. Korea, 33.4, 234-243.
  33. Um, J.G. and M. Shin, 2009, Variations of physicomechanical properties of the cretaceous mudstone in Haman, Gyeongnam due to freeze-thaw weathering, Tunnel & Underground Space, 19.2, 146-157.
  34. Um, J.G., 2012, A study of weathering characteristics of cretaceous granite in Kimhae area due to artificial weathering processes, Tunnel & Underground Space, 22.1, 32-42. https://doi.org/10.7474/TUS.2012.22.1.032
  35. Wiman, S., 1963, A preliminary study of experimental frost weathering, Geografiska Annaler, 45.2/3, 113-121. https://doi.org/10.2307/520387
  36. Yavuz, H., R. Altindag, S. Sarac, I. Ugur, N. Sengun, 2006, Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering, Int. J. Rock Mech. Min., 43, 767-775. https://doi.org/10.1016/j.ijrmms.2005.12.004
  37. Zhang. S., Y. Lai, X. Zhang, Y. Pu and W. Yu, 2004, Study on the damage propagation of surrounding rock from a cold-region tunnel under freeze-thaw cycle condition, Tunn. Undergr. Sp. Tech., 19, 295-302. https://doi.org/10.1016/j.tust.2003.11.011