• Title/Summary/Keyword: 고함량

Search Result 103, Processing Time 0.024 seconds

Assessment of Consolidation Properties Using Modified Oedometer for Radial Drainage Condition (개량형 수평배수 압밀시험 장치에 의한 압밀특성 평가)

  • Jeon, Jesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.143-150
    • /
    • 2009
  • Material functions about effective stress, permeability, coefficient of consolidation and coefficient of volume change has important role to predict consolidation velocity and settlement of soft ground. Modified oedometer for radial drainage is adapted to find out material functions on laboratory tests. Undisturbed sample for laboratory tests were taken from construction sites of industrial complexes on southern coastal area which consists of upper dredged fill and lower original clay layer. For different drainage condition in consolidation process void ratio, effective stress, permeability, coefficient of consolidation and coefficient of volume change has been assessed with results of existing standard oedometer tests. It is worthwhile to note that consolidation material functions could be expressed as regression equation by Stark (2005), heterogeneity for permeability could be assessed from these relationships.

  • PDF

Adsorption Properties of the Lysozyme and Albumin with Physicochemical Properties of the Contact Lens (콘택트렌즈의 물리화학적 특성에 따른 라이소자임과 알부민의 흡착 특성)

  • Sung, Yu-Jin;Ryu, Geun-Chang;Jun, Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.261-270
    • /
    • 2013
  • Purpose: Adsorption properties of lysozyme and albumin according to physiochemical properties of commercial contact lens classified with the FDA categories and a contact lens fabricated in the laboratory were investigated. Methods: The contact lens were prepared using HEMA(2-hydroxyethyl methacrylate) and TRIM(3-(trimethoxysilyl) propyl methacrylate) in a cast mold. Artificial tears containing lysozyme and albumin were prepared. We measured the amounts of protein adsorbed on the each lenses with varying adsorbed time (48 hour) and the pH range (6, 6.8, 7.4, 8.2, 9) of artificial tear. Amount of the proteins absorbed on the contact lenses were measured by using HPLC. Results: Time to reach the equilibrium of protein adsorption for silicone hydrogel lens was taken longer than hydrogel lens. The amount of adsorbed both lysozyme and albumin at equilibrium were greater for the hydrogel lens than the silicone hydrogel lens, and larger for the ionic lens than the non-ionic lens. Lysozyme was more adsorbed on the higher water content of contact lens, whereas albumin was more adsorbed on the lower water content of contact lens. Only lysozyme was adsorbed on the Group IV hydrogel lens of ionic higher water content. The adsorption of protein on contact lens increased with pH of artificial tears as close to the isoelectric point of each protein. Conclusions: The adsorption amount of lysozyme is more affected by the ionic strength of the contact lens surface than the water content of contact lens. Albumin adsorption is more affected by water content than the ionic strength of the contact lens surface. For the adsorption of proteins on the silicone hydrogel lens, the pore size, determined both by the number of Si atoms and the chemical structure of the silicone-containing monomers, as well as the polarity of contact lens should be also considered.

Occurrence of U-minerals and Source of U in Groundwater in Daebo Granite, Daejeon Area (대전지역 대보 화강암내 우라늄 광물의 산출상태와 지하수내 우라늄의 기원)

  • Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.399-407
    • /
    • 2013
  • Some groundwater in Korea contains high U concentrations, especially where two-mica granite occurs in the Daejeon area. The elemental U in the two-mica granite is lower than that in normal granites elsewhere in the world, and U-minerals have yet to be reported in the two-mica granite in the Daejeon area. This study focuses on investigating the occurrence of U-minerals serving as the U source in groundwater. In situ gamma ray spectrometry and mineralogical analyses using EPMA were performed. U-count anomalies were identified in a granitic dyke and in hydrothermally altered granite. Uraniferous granitic dykes occur along the contact zone between the two-mica granite and mica-schist. The uraniferous parts within the two-mica granite are developed in the hydrothermally altered zone, which contains numerous quartz veinlets within a fracture zone. Hydrothermal alteration is dominated by potassic and prophylitic alteration. Uraninite is a common U-mineral in granitic dykes and hydrothermally altered granite. Coffinite and uranophane occur in the hydrothermally altered granite. All of these U-minerals are commonly accompanied by hydrothermal alteration minerals such as muscovite, chlorite, epidote, and calcite. It is concluded that granitic dyke and hydrothermally altered granite are the main source rocks of U in groundwater.

Effect of Ca^{++} and Cu^{++} Removal from Molasses on Yest cell Growth and RNA Accumulation. (당밀로부터 Ca^{++} 및 Cu^{++} 이온 제거가 효모 생육 및 RNA축적에 미치는 영향)

  • 김재범;허선연;김중균;남희섭;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.211-215
    • /
    • 2003
  • When Saccharomyces cerevisiae MTY62, a high-RNA content yeast, was cultivated by fed-batch mode feeding molasses and com steep liquor, the cell density less than 45g-DCW/L and the RNA content less than 140mg/g-cell were obtained, indicating that unknown compounds inhibiting the cell growth and RNA accumulation are contained in the molasses. Therefore, in order to obtain higher levels of cell density and RNA content, $Ca^{++}$, $Cu^{++}$and $K^{+}$ ions in molasses were removed by pretreatments of molasses with various agents such as IonClear BigBead, $Na_2$$HPO_4$, $H_2$$SO_4$, citric acid, $K_2$$HPO_4$, and EDT A. Among them, IonClear BigBead, $Na_2$$HPO_4$, and EDTA gave the highest $Ca^{++}$ removal efficiency of about 60-90%. In the batch culture with pretreated molasses, the cell concentration of 18.6g-DCW/I and RNA concentration of 3127 mg/I, maximum specific growth rate of 0.459$h^{-1}$ , and specific consumption rate of reducing sugar of 1.28g-sugar/g-cell-h were obtained, which are about 10%, 17%,47%, and 36% higher levels, respectively, over the batch culture with untreated molasses.

Effect of Physiochemical Properties of Seokganju on Functionality and Light Fastness (석간주의 이화학적 특성이 기능성 및 내광성에 미치는 영향 연구)

  • Park, Ju Hyun;Jeong, Hye Yeong;Mun, Seong Woo;Woo, In Suk
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.485-495
    • /
    • 2017
  • The purpose of this study is to evaluate the functionality and lightfastness of the natural pigments according to the type of Seokganju used as Dancheong. The commercially available red iron-oxide-based natural pigments that are called Seokganju and Daija manufactured by traditional methods in Korea and Japan were selected. The analysis of the constituent minerals and constituents of 8 kinds of collected Seokganju showed that most of them contained hematite. There are two types of Seokganju according to the $Fe_2O_3$ contents. The type of Seokganju can be characterized not only using the main component but also from the burn-out processing. The chromaticity results for Seokganju with a high $Fe_2O_3$ concentration indicate dark red or grayish brown, while those for Seokganju with a low $Fe_2O_3$ concentration indicate yellowish red or yellowish brown. Samples were prepared by mixing with a glue solution and functional properties were evaluated based on the opacity and spreadability. Coated samples were used in the lightfastness test. The spreadability and opacity of the pigments were measured differently depending on the main component. Most Seokganju samples a showed slight color change until $9,000kJ/m^2$ but rapid color changes were detected after $18,000kJ/m^2$. In particular, burnt Seokganju showed superior lightfastness.

Fed-Batch Fermentation of High-Content RNA Yeast by Using Molasses Medium. (당밀 배지를 이용한 고함량 RNA효모의 유가배양)

  • 김재범;권미정;남희섭;김재훈;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.234-239
    • /
    • 2001
  • In order to maximize the RNA accumulation and biomass production is Saccharomyces cerevisiae MTY62, a high-content RNA yeast strain, batch and fed-batch cultures were performed. Among the feeding modes of fed-batch cultures examined, the intermittent feeding mode R\`(IFB-lV), in which 50 ml of 40% molasses and 20% com steep liquor (CSL) solution was intermittently fed for 5 times, resulted in the cell concentration of 33.8 g- dry cell weight/1 and the RNA concentration of 5221 mg-/l, and RNA content of 153 mg-RNA/g-dry cell weight. The constant fed-batch with feeding mode III (CFB-III), in which the feeding rate of 40% molasses and 20% CSL solution was stepwisely decreased from 48 mph (9-13 h), to 24 mph (13-21 h), and to 18 ml/h (21∼ 48 h), gave the highest cell concentration of 42.7 g-dry ceil weigh71 and R7IA concentration of 5536 mg-RNA/1, which were about 2.4-fold and 1.9-fold increased levels, respectively, compared to the results of batch culture. However, the RNA con- tent of 130 mg-RNA/g-dry cell weight of the fed-batch was lower than that of the batch culture (171 mg-RNA/g-dry cell weight) and other fed-batch cultures. When the specific growth rates in the fed-batch cultures were increased, the RNA contents increased. This result indicates that the RNA content is adversely proportional to the cell concen- tration. However, at the same specific growth rate, the RNA content was maintained at higher level in the intermit- tent fed-batch than in the constant fed-batch culture.

  • PDF

Selection of Yeast Mutant Strain with High RNA Content and Its High Cell-Density Fed-Batch Culture. (고함량 RNA 효모 변이주의 선별 및 고농도세포 유가배양)

  • 김재범;권미정;남희섭;김재훈;남수완
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.68-72
    • /
    • 2002
  • To obtain a yeast mutant with high RNA content and high growth rate, Saccharomyces cerevisiae MTY62 was mutated with ethylmethane sulfonate. Among the selected mutants that were sensitive to the high concentration of KCl, M40-10 strain was finally selected due to its rapid cell growth and high RNA content in the tube and baffled-flask cultures. In the batch culture of M40-10 mutant, the maximum specific growth rate ($\mu_{max}$) of $0.38 h^{-1}$ , RNA concentration of 3210 mg-RNA/1, and RNA content of 183 mg-RNA/g-DCW were obtained, which were 23%, 15%, and 12% increased levels, respectively, compared to those of MTY62 parent strain. The intermittent fed-batch culture of M40-10 strain resulted in the maximum cell concentration of 35.6 g-DCW/1, RNA concentration of 5677 mg/1, and RNA content of 160 mg-RNA/g-DCW. Through the constant fed-batch culture, the maximum cell concentration of 46.4 g-DCW/1, RNA concentration of 6270 mg-RNA/1, and RNA content of 135 mg-RNA/g-DCW were obtained. At the 20 h culture time in the fed-batch cultures of M40-10 strain, the cell and RNA concentrations were increased by 30% and 10%, respectively, over the parent strain MTY62. In addition, it was also found that the accumulated RNA within the mutant cell was not degraded until the end of fed-batch cultivation, indicating that the M40-10 cell is a mutant with weak acidic RNase activity.y.

Comparative Analysis of Nutritional and Harmful Components in Korean and Chinese Mealworms (Tenebrio molitor) (국산 및 중국산 갈색거저리(Tenebrio molitor)의 영양성분 및 유해물질 비교분석)

  • Yoo, Jeongmi;Hwang, Jae-Sam;Goo, Tae-Won;Yun, Eun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.249-254
    • /
    • 2013
  • As part of a study on insects as food, the nutritional and harmful components in the mealworm (Tenebrio molitor) were analyzed. In addition, due to a recent introduction of live Chinese mealworms in the Korean market, components between Korean and Chinese mealworms were compared. Analysis of general composition (moisture, crude protein, crude fat, crude ash, crude fiber, and carbohydrates) showed that crude protein (50.32~52.79%) was abundant in both Korean and Chinese mealworm powders, with the protein content in the Chinese mealworm powder higher than that in the Korean mealworm powder by 2.67%. The amino acid compositions were similar, but the fatty acid compositions differed in the Korean and Chinese mealworm powders. The unsaturated fatty acid contents were 76.80~80.55% of the total fatty acid content in the mealworms. The linoleic acid contents in the Korean and Chinese mealworms were $20.8{\pm}1.1%$ and $34.69{\pm}1.9%$; the linolenic acid contents were 0.47% and 1.31%; and the oleic acid contents were $51.40{\pm}0.9%$ and $40.20{\pm}1.5%$, respectively. With respect to harmful components, such as heavy metals and bacteria that cause food poisoning, bacteria such as Escherichia coli O157:H7 and Salmonella spp. were not detected in both Korean and Chinese mealworms, and the mercury content was below the standard values for common foods (Korea, 0.03 mg/kg; China, 0.08 mg/kg).

Development of high tryptophan GM rice and its transcriptome analysis (고 함량 트립토판 생산 GM 벼 개발 및 전사체 분석)

  • Jung, Yu Jin;Nogoy, Franz Marielle;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.186-195
    • /
    • 2015
  • Anthranilate synthase (AS) is a key enzyme in the biosynthesis of tryptophan (Trp), which is the precursor of bioactive metabolites like indole-3-acetic acid and other indole alkaloids. Alpha anthranilate synthase 2 (OsASA2) plays a critical role in the feedback inhibition of tryptophan biosynthesis. In this study, two vectors with single (F124V) and double (S126F/L530D) point mutations of the OsASA2 gene for feedback-insensitive ${\alpha}$ subunit of rice anthranilate synthase were constructed and transformed into wildtype Dongjinbyeo by Agrobacterium-mediated transformation. Transgenic single and double mutant lines were selected as a single copy using TaqMan PCR utilized nos gene probe. To select intergenic lines, the flanking sequence of RB or LB was digested with a BfaI enzyme. Four intergenic lines were selected using a flanking sequence tagged (FST) analysis. Expression in rice (Oryza sativa L.) of the transgenes resulted in the accumulation of tryptophan (Trp), indole-3-acetonitrile (IAN), and indole-3-acetic acid (IAA) in leaves and tryptophan content as a free amino acid in seeds also increased up to 30 times relative to the wildtype. Two homozygous event lines, S-TG1 and D-TG1, were selected for characterization of agronomic traits and metabolite profiling of seeds. Differentially expressed genes (DEGs), related to ion transfer and nutrient supply, were upregulated and DEGs related to co-enzymes that work as functional genes were down regulated. These results suggest that two homozygous event lines may prove effective for the breeding of crops with an increased level of free tryptophan content.

Analysis of cause of engine failure during power generation using biogas in sewage treatment plant (하수처리장 바이오가스를 이용한 발전시 가스엔진의 고장원인 분석)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.13-29
    • /
    • 2016
  • In this study, we analyzed the causes of major faults in the biogas plant through the case of gas engine failure when cogenerating electricity and heat using biogas as a fuel in the actual sewage treatment plant and suggested countermeasures. Hydrogen sulfide in the biogas entering the biogas engine and water caused by intermittent malfunction of the water removal system caused intercooler corrosion in the biogas engine. In addition, the siloxane in the biogas forms a silicate compound with silicon dioxide, which causes scratches and wear of the piston surface and the inner wall of the cylinder liner. The substances attached to the combustion chamber and the exhaust system were analyzed to be combined with hydrogen sulfide and other impurities. It is believed that hydrogen sulfide was supplied to the desulfurization plant for a long period of time because of the high content of hydrogen sulfide (more than 50ppm) in the biogas and the hydrogen sulfide was introduced into the engine due to the decrease of the removal efficiency due to the breakthrough point of the activated carbon in the desulfurization plant. In addition, the hydrogen sulfide degrades the function of the activated carbon for siloxane removal of the adsorption column, which is considered to be caused by the introduction of unremoved siloxane waste into the engine, resulting in various types of engine failure. Therefore, hydrogen sulfide, siloxane, and water can be regarded as the main causes of the failure of the biogas engine. Among them, hydrogen sulfide reacts with other materials causing failure and can be regarded as a substance having a great influence on the pretreatment process. As a result, optimization of $H_2S$ removal method seems to be an essential measure for stable operation of the biogas engine.